9 research outputs found

    Electromagnetically induced transparency in multi-level cascade scheme of cold rubidium atoms

    Full text link
    We report an experimental investigation of electromagnetically induced transparency in a multi-level cascade system of cold atoms. The absorption spectral profiles of the probe light in the multi-level cascade system were observed in cold Rb-85 atoms confined in a magneto-optical trap, and the dependence of the spectral profile on the intensity of the coupling laser was investigated. The experimental measurements agree with the theoretical calculations based on the density matrix equations of the rubidium cascade system.Comment: 9 pages, 5 figure

    Do Seasonal Glucocorticoid Changes Depend on Reproductive Investment? A Comparative Approach in Birds

    Get PDF
    Animals go through different life history stages such as reproduction, moult, or migration, of which some are more energy-demanding than others. Baseline concentrations of glucocorticoid hormones increase during moderate, predictable challenges and thus are expected to be higher when seasonal energy demands increase, such as during reproduction. By contrast, stress-induced glucocorticoids prioritize a survival mode that includes reproductive inhibition. Thus, many species down-regulate stress-induced glucocorticoid concentrations during the breeding season. Interspecific variation in glucocorticoid levels during reproduction has been successfully mapped onto reproductive investment, with species investing strongly in current reproduction (fast pace of life) showing higher baseline and lower stress-induced glucocorticoid concentrations than species that prioritize future reproduction over current attempts (slow pace of life). Here we test the >glucocorticoid seasonal plasticity hypothesis>, in which we propose that interspecific variation in seasonal changes in glucocorticoid concentrations from the non-breeding to the breeding season will be related to the degree of reproductive investment (and thus pace of life). We extracted population means for baseline (for 54 species) and stress-induced glucocorticoids (for 32 species) for the breeding and the non-breeding seasons from the database >HormoneBase>, also calculating seasonal glucocorticoid changes. We focused on birds because this group offered the largest sample size. Using phylogenetic comparative methods, we first showed that species differed consistently in both average glucocorticoid concentrations and their changes between the two seasons, while controlling for sex, latitude, and hemisphere. Second, as predicted seasonal changes in baseline glucocorticoids were explained by clutch size (our proxy for reproductive investment), with species laying larger clutches showing a greater increase during the breeding season-especially in passerine species. In contrast, changes in seasonal stress-induced levels were not explained by clutch size, but sample sizes were more limited. Our findings highlight that seasonal changes in baseline glucocorticoids are associated with a species' reproductive investment, representing an overlooked physiological trait that may underlie the pace of life

    Species-Specific Means and Within-Species Variance in Glucocorticoid Hormones and Speciation Rates in Birds

    No full text
    At macroevolutionary scales, stress physiology may have consequences for species diversification and subspecies richness. Populations that exploit new resources or undergo range expansion should cope with new environmental challenges, which could favor higher mean stress responses. Within-species variation in the stress response may also play a role in mediating the speciation process: in species with broad variation, there will always be some individuals that can tolerate an unpredictable environment, whereas in species with narrow variation there will be fewer individuals that are able to thrive in a new ecological niche. We tested for the evolutionary relationship between stress response, speciation rate, and subspecies richness in birds by relying on the HormoneBase repository, from which we calculated within- and among-species variation in baseline (BL) and stress-induced (SI) corticosterone levels. To estimate speciation rates, we applied Bayesian analysis of macroevolutionary mixtures that can account for variation in diversification rate among clades and through time. Contrary to our predictions, lineages with higher diversification rates were not characterized by higher BL or SI levels of corticosterone either at the tips or at the deeper nodes of the phylogeny. We also found no association between mean hormone levels and subspecies richness. Within-species variance in corticosterone levels showed close to zero repeatability, thus it is highly unlikely that this is a species-specific trait that influences diversification rates. These results imply that stress physiology may play a minor, if any, role in determining speciation rates in birds

    Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial.

    No full text
    BACKGROUND: Cilengitide is a selective αvβ3 and αvβ5 integrin inhibitor. Data from phase 2 trials suggest that it has antitumour activity as a single agent in recurrent glioblastoma and in combination with standard temozolomide chemoradiotherapy in newly diagnosed glioblastoma (particularly in tumours with methylated MGMT promoter). We aimed to assess cilengitide combined with temozolomide chemoradiotherapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter. METHODS: In this multicentre, open-label, phase 3 study, we investigated the efficacy of cilengitide in patients from 146 study sites in 25 countries. Eligible patients (newly diagnosed, histologically proven supratentorial glioblastoma, methylated MGMT promoter, and age ≥18 years) were stratified for prognostic Radiation Therapy Oncology Group recursive partitioning analysis class and geographic region and centrally randomised in a 1:1 ratio with interactive voice response system to receive temozolomide chemoradiotherapy with cilengitide 2000 mg intravenously twice weekly (cilengitide group) or temozolomide chemoradiotherapy alone (control group). Patients and investigators were unmasked to treatment allocation. Maintenance temozolomide was given for up to six cycles, and cilengitide was given for up to 18 months or until disease progression or unacceptable toxic effects. The primary endpoint was overall survival. We analysed survival outcomes by intention to treat. This study is registered with ClinicalTrials.gov, number NCT00689221. FINDINGS: Overall, 3471 patients were screened. Of these patients, 3060 had tumour MGMT status tested; 926 patients had a methylated MGMT promoter, and 545 were randomly assigned to the cilengitide (n=272) or control groups (n=273) between Oct 31, 2008, and May 12, 2011. Median overall survival was 26·3 months (95% CI 23·8-28·8) in the cilengitide group and 26·3 months (23·9-34·7) in the control group (hazard ratio 1·02, 95% CI 0·81-1·29, p=0·86). None of the predefined clinical subgroups showed a benefit from cilengitide. We noted no overall additional toxic effects with cilengitide treatment. The most commonly reported adverse events of grade 3 or worse in the safety population were lymphopenia (31 [12%] in the cilengitide group vs 26 [10%] in the control group), thrombocytopenia (28 [11%] vs 46 [18%]), neutropenia (19 [7%] vs 24 [9%]), leucopenia (18 [7%] vs 20 [8%]), and convulsion (14 [5%] vs 15 [6%]). INTERPRETATION: The addition of cilengitide to temozolomide chemoradiotherapy did not improve outcomes; cilengitide will not be further developed as an anticancer drug. Nevertheless, integrins remain a potential treatment target for glioblastoma. FUNDING: Merck KGaA, Darmstadt, Germany
    corecore