8 research outputs found

    Longitudinally Extensive Transverse Myelitis with Intramedullary Metastasis of Small-Cell Lung Carcinoma: An Autopsy Case Report

    Get PDF
    Background. Longitudinally extensive transverse myelitis (LETM) is characterized by spinal cord inflammation extending vertically through three or more vertebral segments. The widespread use of MRI revealed LETM more frequency than ever. We report the case of a patient with pathologically confirmed small-cell lung carcinoma metastasis into the spinal cord presenting as LETM. Case Presentation. A 74-year-old man developed rapidly progressive sensorimotor disturbance and vesicorectal dysfunction. T2-weighted magnetic resonance imaging of the spine revealed LETM at the level of from T3 to conus medullaris; gadolinium enhancement showed concurrent tumor in the thoracic spinal cord from T10 to T11. Systemic survey identified a nodular mass in the lung that was verified as small-cell carcinoma. Following initial failed treatment by high-dose steroid, the patient underwent an emergent microsurgical tumor resection. Histological examination was identical with the lung carcinoma. The patient died of tumor progression at the 47th day after admission. At autopsy, only changes of edema were found in the gray matter of the cord, while tumor cells were not noted in it. Conclusion. Metastasis may rarely present symptoms of LETM. Prompt identification of underlying etiology by contrast examination and systemic survey is crucial for the patient assumed as LETM

    The unexpected role of polyubiquitin chains in the formation of fibrillar aggregates

    Get PDF
    ポリユビキチン鎖のアミロイド様線維形成を発見 -神経変性疾患における脳内異常タンパク質凝集の形成機構解明に期待-. 京都大学プレスリリース. 2015-01-21.Ubiquitin is known to be one of the most soluble and stably folded intracellular proteins, but it is often found in inclusion bodies associated with various diseases including neurodegenerative disorders and cancer. To gain insight into this contradictory behaviour, we have examined the physicochemical properties of ubiquitin and its polymeric chains that lead to aggregate formation. We find that the folding stability of ubiquitin chains unexpectedly decreases with increasing chain length, resulting in the formation of amyloid-like fibrils. Furthermore, when expressed in cells, polyubiquitin chains covalently linked to EGFP also form aggregates depending on chain length. Notably, these aggregates are selectively degraded by autophagy. We propose a novel model in which the physical and chemical instability of polyubiquitin chains drives the formation of fibrils, which then serve as an initiation signal for autophagy

    The Inhibitory Effects of Anti-ERC/Mesothelin Antibody 22A31 on Colorectal Adenocarcinoma Cells, within a Mouse Xenograft Model

    No full text
    The expression of Renal Carcinoma (ERC)/mesothelin is enhanced in a variety of cancers. ERC/mesothelin contributes to cancer progression by modulating cell signals that regulate proliferation and apoptosis. Based on such biological insights, ERC/mesothelin has become a molecular target for the treatment of mesothelioma, pancreatic cancer, and ovarian cancer. Recent studies revealed about 50–60% of colorectal adenocarcinomas also express ERC/mesothelin. Therefore, colorectal cancer can also be a potential target of the treatment using an anti-ERC/mesothelin antibody. We previously demonstrated an anti-tumor effect of anti-ERC antibody 22A31 against mesothelioma. In this study, we investigated the effect of 22A31 on a colorectal adenocarcinoma cell line, HCT116. The cells were xenografted into BALB/c nu/nu mice. All mice were randomly allocated to either an antibody treatment group with 22A31 or isotype-matched control IgG1κ. We compared the volume of subsequent tumors, and tumors were pathologically assessed by immunohistochemistry. Tumors treated with 22A31 were significantly smaller than those treated with IgG1κ and contained significantly fewer mitotic cells with Ki67 staining. We demonstrated that 22A31 exhibited a growth inhibitory property on HCT116. Our results implied that ERC/mesothelin-targeted therapy might be a promising treatment for colorectal cancer

    D-loop of Actin Differently Regulates the Motor Function of Myosins II and V*

    No full text
    To gain more information on the manner of actin-myosin interaction, we examined how the motile properties of myosins II and V are affected by the modifications of the DNase I binding loop (D-loop) of actin, performed in two different ways, namely, the proteolytic digestion with subtilisin and the M47A point mutation. In an in vitro motility assay, both modifications significantly decreased the gliding velocity on myosin II-heavy meromyosin due to a weaker generated force but increased it on myosin V. On the other hand, single molecules of myosin V “walked” with the same velocity on both the wild-type and modified actins; however, the run lengths decreased sharply, correlating with a lower affinity of myosin for actin due to the D-loop modifications. The difference between the single-molecule and the ensemble measurements with myosin V indicates that in an in vitro motility assay the non-coordinated multiple myosin V molecules impose internal friction on each other via binding to the same actin filament, which is reduced by the weaker binding to the modified actins. These results show that the D-loop strongly modulates the force generation by myosin II and the processivity of myosin V, presumably affecting actin-myosin interaction in the actomyosin-ADP·Pi state of both myosins
    corecore