1,868 research outputs found

    Multivalent antigen arrays exhibit high avidity binding and modulation of B cell receptor-mediated signaling to drive efficacy against experimental autoimmune encephalomyelitis

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Biomacromolecules, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.biomac.7b00335.A pressing need exists for antigen-specific immunotherapies (ASIT) that induce selective tolerance in autoimmune disease while avoiding deleterious global immunosuppression. Multivalent soluble antigen arrays (SAgAPLP:LABL), consisting of a hyaluronic acid (HA) linear polymer backbone co-grafted with multiple copies of autoantigen (PLP) and cell adhesion inhibitor (LABL) peptides, are designed to induce tolerance to a specific multiple sclerosis (MS) autoantigen. Previous studies established that hydrolyzable SAgAPLP:LABL, employing a degradable linker to codeliver PLP and LABL, was therapeutic in experimental autoimmune encephalomyelitis (EAE) in vivo and exhibited antigen-specific binding with B cells, targeted the B cell receptor (BCR), and dampened BCR-mediated signaling in vitro. Our results pointed to sustained BCR engagement as the SAgAPLP:LABL therapeutic mechanism, so we developed a new version of the SAgA molecule using non-hydrolyzable conjugation chemistry, hypothesizing it would enhance and maintain the molecule’s action at the cell surface to improve efficacy. ‘Click SAgA’ (cSAgAPLP:LABL) uses hydrolytically stable covalent conjugation chemistry (Copper-catalyzed Azide-Alkyne Cycloaddition (CuAAC)) rather than a hydrolyzable oxime bond to attach PLP and LABL to HA. We explored cSAgAPLP:LABL B cell engagement and modulation of BCR-mediated signaling in vitro through flow cytometry binding and calcium flux signaling assays. Indeed, cSAgAPLP:LABL exhibited higher avidity B cell binding and greater dampening of BCR-mediated signaling than hydrolyzable SAgAPLP:LABL. Furthermore, c SAgAPLP:LABL exhibited significantly enhanced in vivo efficacy compared to hydrolyzable SAgAPLP:LABL, achieving equivalent efficacy at one quarter of the dose. These results indicate that non-hydrolyzable conjugation increased the avidity of cSAgAPLP:LABL to drive in vivo efficacy through modulated BCR-mediated signaling.NIH T32 GM008545Madison and Lila Self Graduate Fellowship at the University of KansasHoward Rytting pre-doctoral fellowship from the Department of Pharmaceutical Chemistry at the University of Kansa

    Self-organized Pattern Formation in Motor-Microtubule Mixtures

    Full text link
    We propose and study a hydrodynamic model for pattern formation in mixtures of molecular motors and microtubules. The steady state patterns we obtain in different regimes of parameter space include arrangements of vortices and asters separately as well as aster-vortex mixtures and fully disordered states. Such stable steady states are observed in experiments in vitro. The sequence of patterns obtained in the experiments can be associated with smooth trajectories in a non-equilibrium phase diagram for our model.Comment: 11 pages Latex file, 2 figures include

    Clinical effectiveness and cost-effectiveness of immediate angioplasty for acute myocardial infarction : systematic review and economic evaluation

    Get PDF
    Background The blockage of a coronary artery (coronary thrombosis) can lead to a heart attack (acute myocardial infarction). There are several ways of trying to overcome this blockage. The methods include drug treatment to dissolve the clot (thrombolysis) and physical intervention, either by passing a catheter into the affected artery [angioplasty or percutaneous coronary intervention (PCI)], or bypassing the blocked section by cardiac surgery [coronary artery bypass grafting (CABG)]. Thrombolysis can be given in the community before the patient is sent to hospital, or delayed until after admission. Prehospital thrombolysis is not common in the UK. Immediate angioplasty is not routinely available in the UK at present; it is much more common in the USA. Objectives To review the clinical evidence comparing immediate angioplasty with thrombolysis, and to consider whether it would be cost-effective. Methods This report was based on a systematic review of the evidence of clinical effectiveness and an economic analysis of cost-effectiveness based on the clinical review and on cost data from published sources and de novo data collection. Data sources The search strategy searched six electronic databases (including Medline, Cochrane Library and EMBASE), with English-language limits, for the periods up to December 2002. Bibliographies of related papers were assessed for relevant studies and experts contacted for advice and peer review, and to identify additional published and unpublished references. Study selection For clinical effectiveness, a comprehensive review of randomised controlled trials (RCTs) was used for efficacy, and a selection of observational studies such as case series or audit data for effectiveness safety in routine practice. RCTs of thrombolysis were used to assess the relative value of prehospital and hospital thrombolysis. Observational studies were used to assess the representativeness of patients in the RCTs, and to determine whether different groups have different capacity to benefit. They were used to assess the implications of wider diffusion of the technology away from major centres. Data extraction Data extraction and quality assessment were undertaken by one reviewer and checked by a second reviewer, with any disagreements resolved through discussion. The quality of systematic reviews, RCTs, controlled clinical trials and economic studies was assessed using criteria recommended by the NHS Centre for Reviews and Dissemination (University of York). Study synthesis Clinical effectiveness was synthesised through a narrative review with full tabulation of results of all included studies and a meta-analysis to provide a precise estimate of absolute clinical benefit. Consideration was given to the effect of the growing use of stents. The economic modelling adopted an NHS perspective to develop a decision-analytical model of cost-effectiveness focusing on opportunity costs over the short term (6 months). Results and conclusion Number and quality of studies, and summary of benefits There were several good-quality systematic reviews, including a Cochrane review, as well as an individual patient meta-analysis and a number of recent trials not included in the reviews. The results were consistent in showing an advantage of immediate angioplasty over hospital thrombolysis. The updated meta-analysis showed that mortality is reduced by about one-third, from 7.6% to 4.9% in the first 6 months, and by about the same in studies of up to 24 months. Reinfarction is reduced by over half, from 7.6% to 3.1%. Stroke is reduced by about two-thirds, from 2.3% with thrombolysis to 0.7% with PCI, with the difference being due to haemorrhagic stroke. The need for CABG is reduced by about one-third, from 13.2% to 8.4%. Caution is needed in interpreting the older trials, as changes such as an increase in stenting and the use of the glycoprotein IIb/IIa inhibitors may improve the results of PCI. There is little evidence comparing prehospital thrombolysis with immediate PCI. One good quality study from France showed that prehospital thrombolysis with PCI in those in whom thrombolysis failed was as good as universal PCI. Research on thrombolysis followed by PCI, known as facilitated PCI, is underway, but results are not yet available. Further caveats are needed. Trials may be done in select centres and results may not be as good in lower volume centres, or out of normal working hours. In addition, much of the marginal mortality benefit of PCI over hospital thrombolysis may be lost if door-to-balloon time were more than 1 hour longer than door-to-needle time. Conversely, within the initial 6 hours, the later patients present, the greater the relative advantage of PCI. Cost-effectiveness If both interventions were routinely available, the economic analysis favours PCI, given the assumptions of the model. Results suggest that PCI is more cost-effective than thrombolysis, providing additional benefits in health status at some extra cost and an incremental cost per unit change in health status under the £30,000 threshold in most instances. In the longer term, the cost difference is expected to be reduced because of higher recurrence and reintervention rates among those who had thrombolysis. The model is not particularly sensitive to variations in probabilities from the clinical effectiveness analysis. However, very few units in England could offer a routine immediate PCI service at present, and there would be considerable resource implications of setting up such services. Without a detailed survey of existing provision, it is not possible to quantify the implications, but they include both capital and revenue: an increase in catheter laboratory provision and running costs. The greatest problem would be staffing, and that would take some years to resolve. A gradual incrementalist approach based on clinical networks, with transfer to centres able to offer PCI, could be used. In rural areas, one option could be to promote an increase in prehospital thrombolysis, with PCI for thrombolysis failures. Need for further research There is a need for economic data on the long-term consequences of the treatment, the quality of life of patients after treatment and the effects of PCI following thrombolysis failure

    Identifying dynamical modules from genetic regulatory systems: applications to the segment polarity network

    Get PDF
    BACKGROUND It is widely accepted that genetic regulatory systems are 'modular', in that the whole system is made up of smaller 'subsystems' corresponding to specific biological functions. Most attempts to identify modules in genetic regulatory systems have relied on the topology of the underlying network. However, it is the temporal activity (dynamics) of genes and proteins that corresponds to biological functions, and hence it is dynamics that we focus on here for identifying subsystems. RESULTS Using Boolean network models as an exemplar, we present a new technique to identify subsystems, based on their dynamical properties. The main part of the method depends only on the stable dynamics (attractors) of the system, thus requiring no prior knowledge of the underlying network. However, knowledge of the logical relationships between the network components can be used to describe how each subsystem is regulated. To demonstrate its applicability to genetic regulatory systems, we apply the method to a model of the Drosophila segment polarity network, providing a detailed breakdown of the system. CONCLUSION We have designed a technique for decomposing any set of discrete-state, discrete-time attractors into subsystems. Having a suitable mathematical model also allows us to describe how each subsystem is regulated and how robust each subsystem is against perturbations. However, since the subsystems are found directly from the attractors, a mathematical model or underlying network topology is not necessarily required to identify them, potentially allowing the method to be applied directly to experimental expression data

    Acute B-Cell Inhibition by Soluble Antigen Arrays Is Valency-Dependent and Predicts Immunomodulation in Splenocytes

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Biomacromolecules, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.biomac.9b00328.Antigen valency plays a fundamental role in directing the nature of an immune response to be stimulatory or tolerogenic. Soluble Antigen Arrays (SAgAs) are an antigen-specific immunotherapy that combats autoimmunity through the multivalent display of autoantigen. While mechanistic studies have shown SAgAs to induce T and B-cell anergy, the effect of SAgA valency has never been experimentally tested. Here, SAgAs of discrete antigen valencies were synthesized by click chemistry and evaluated for acute B-cell signaling inhibition as well as downstream immunomodulatory effects in splenocytes. Initial studies using the Raji B-cell line demonstrated SAgA valency dictated the extent of calcium flux. Lower valency constructs elicited the largest reductions in B-cell activation. In splenocytes from mice with experimental autoimmune encephalomyelitis, the same valency-dependent effects were evident in the downregulation of the costimulatory marker CD86. The reduction of calcium flux observed in Raji B-cells correlated strongly with downregulation in splenocyte CD86 expression after 72 hours. Here, a thorough analysis of SAgA antigenic valency illustrates that low, but not monovalent, presentation of autoantigen was ideal for eliciting the most potent immunomodulatory effects.Madison and Lila Self Graduate Fellowship at the University of KansasNIH T32 GM00854

    Cycle-centrality in complex networks

    Full text link
    Networks are versatile representations of the interactions between entities in complex systems. Cycles on such networks represent feedback processes which play a central role in system dynamics. In this work, we introduce a measure of the importance of any individual cycle, as the fraction of the total information flow of the network passing through the cycle. This measure is computationally cheap, numerically well-conditioned, induces a centrality measure on arbitrary subgraphs and reduces to the eigenvector centrality on vertices. We demonstrate that this measure accurately reflects the impact of events on strategic ensembles of economic sectors, notably in the US economy. As a second example, we show that in the protein-interaction network of the plant Arabidopsis thaliana, a model based on cycle-centrality better accounts for pathogen activity than the state-of-art one. This translates into pathogen-targeted-proteins being concentrated in a small number of triads with high cycle-centrality. Algorithms for computing the centrality of cycles and subgraphs are available for download

    Global organization of metabolic fluxes in the bacterium, Escherichia coli

    Full text link
    Cellular metabolism, the integrated interconversion of thousands of metabolic substrates through enzyme-catalyzed biochemical reactions, is the most investigated complex intercellular web of molecular interactions. While the topological organization of individual reactions into metabolic networks is increasingly well understood, the principles governing their global functional utilization under different growth conditions pose many open questions. We implement a flux balance analysis of the E. coli MG1655 metabolism, finding that the network utilization is highly uneven: while most metabolic reactions have small fluxes, the metabolism's activity is dominated by several reactions with very high fluxes. E. coli responds to changes in growth conditions by reorganizing the rates of selected fluxes predominantly within this high flux backbone. The identified behavior likely represents a universal feature of metabolic activity in all cells, with potential implications to metabolic engineering.Comment: 15 pages 4 figure
    corecore