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Abstract

Antigen valency plays a fundamental role in directing the nature of an immune response to be 

stimulatory or tolerogenic. Soluble Antigen Arrays (SAgAs) are an antigen-specific 

immunotherapy that combats autoimmunity through the multivalent display of autoantigen. While 

mechanistic studies have shown SAgAs to induce T and B-cell anergy, the effect of SAgA valency 

has never been experimentally tested. Here, SAgAs of discrete antigen valencies were synthesized 

by click chemistry and evaluated for acute B-cell signaling inhibition as well as downstream 

immunomodulatory effects in splenocytes. Initial studies using the Raji B-cell line demonstrated 

SAgA valency dictated the extent of calcium flux. Lower valency constructs elicited the largest 

reductions in B-cell activation. In splenocytes from mice with experimental autoimmune 

encephalomyelitis, the same valency-dependent effects were evident in the downregulation of the 

costimulatory marker CD86. The reduction of calcium flux observed in Raji B-cells correlated 

strongly with downregulation in splenocyte CD86 expression after 72 hours. Here, a thorough 

analysis of SAgA antigenic valency illustrates that low, but not monovalent, presentation of 

autoantigen was ideal for eliciting the most potent immunomodulatory effects.
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INTRODUCTION

Antigen presentation, especially with regards to valency (the number of antigens presented) 

can be a powerful therapeutic tool for either stimulating or suppressing immunity. More 

importantly, tuning ligand density on a macromolecule or colloid can vastly amplify or 

diminish immune signaling down either pathway1–5. Targeting antigen-specific cell surface 

receptors may also provide a targeted approach to directing immune responses. Moving from 

monovalent antigen toward a multivalent antigen display can increase therapeutic potency by 

virtue of increasing receptor engagement through avidity6–9. Investigation of both density 

and valency-dependent immunity matured in the late 1970s with seminal work by Howard 

Dintzis which illustrated starkly different immunological outcomes. By tuning properties 

including molecular size and ligand valency, Dintzis observed that large (>100 kD) polymers 

grafted with high ligand density (>20 ligands/polymer, or 1 ligand per 5 kD) were 

immunogenic while smaller constructs (<100 kD) with similar or lower valency (<20 

ligands/polymer) tended to be tolerogenic in nature10–13.

Central to this work was a focus on B-cells as potent directors of immunity. Nanoparticles 

target dendritic cells through nonspecific uptake that is mainly due to transport phenomena 

where depot formation at injection sites necessitates active transport by these sentinels to 

secondary lymphoid organs14–17, but antigen-grafted polymers are uniquely able to target 

antigen-specific B-cell receptors by virtue of solubility (facilitating passive transport to B-

cell rich lymph nodes), backbone flexibility, and retained ligand functionality18. Much has 

been done to elucidate the signaling events triggered by occupation of B-cell receptors 

(BCR), especially in the area of valency-dependent receptor clustering19–20. Work by 

Kiessling and others has shown BCR clustering events as determinants of cell response, 

which has reflected many of Dintzis’ findings regarding the relationship between valency 

and immunogenicity18, 21. For example, increased avidity afforded by multivalent ligands 
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was linked to the degree of BCR clustering as a driving factor dictating the B-cell 

response22–23. B-cells are known to be potent initiators of immunity24, and the successful 

treatment of autoimmunity through depletion of these populations has reinforced their 

pathological role in directing the broader immune system25–27.

Soluble Antigen Arrays (SAgAs) exhibit size and valency characteristics of tolerogenic 

compounds espoused by Dintzis and others. SAgAs are constructed using antigenic peptides 

conjugated to a linear, polymeric hyaluronic acid (HA) backbone as antigen-specific 

immunotherapy (ASIT) for combating autoimmunity28–29. Initially SAgAs were developed 

as a platform for displaying antigen alongside inhibitors of inflammatory immune 

responses30–33, though recent mechanistic work has suggested the inhibitors may be 

somewhat dispensable. These studies have illustrated the integral role of antigen-specific 

binding and clustering of BCRs for effect34–36. Past work has focused almost exclusively on 

SAgAs made using a 16–20 kD HA backbone displaying roughly 10 copies of antigenic 

peptide (PLP139–151) and 10 copies of a peptide (LABL) that inhibits binding of intracellular 

cell-adhesion molecule-1 (ICAM-1)37. This work has gone far to expand our understanding 

of how multivalent polymers evoke immunological tolerance through the antigen-specific 

binding and clustering of BCRs34–36. Past studies have shown these events anergize B cells 

by decreasing calcium flux, downregulating costimulatory molecule CD86 and skewing 

cytokines toward a regulatory phenotype35. Notably, valency has never been experimentally 

probed in this system where this avid engagement of B cells and clustering of BCRs has 

been identified as a central to the SAgA mechanism.

Here, we hypothesized that titrating peptide valency could modulate initial B-cell behavior 

and ultimately tune downstream cellular immune responses in mixed splenocytes. To 

investigate this supposition, we modified a 16 kD hyaluronic acid backbone and employed 

click chemistry38–39 to synthesize a small library of SAgAs with discrete valencies for 

evaluation in both a B-cell in vitro model as well as an ex vivo experimental autoimmune 

encephalomyelitis (EAE) splenocyte assay. Furthermore, we tested the contribution of 

LABL as a secondary adhesion ligand by investigating the effects of SAgAs conjugated with 

only PLP139–151 antigen as well as those conjugated with both PLP139–151 and LABL.

METHODS

Materials

Hyaluronic acid (HA) sodium salt (MW 16 kDa) was purchased from Lifecore Biomedical 

(Chaska, MN). 11-azido-3,6,9-trioxaundecan-1-amine (NH2-PEG3-N3), N-
hydroxysuccinimide, N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride 

(EDC), 2-(N-morpholino)ethane-sulfonic acid sodium salt (MES), tris(3-

hydroxypropyltriazolylmethyl)amine, and sodium ascorbate (NaAsc) were purchased from 

Sigma-Aldrich (St. Louis, MO). Copper(II) sulfate pentahydrate (CuSO4·5H2O) was 

purchased from Acros Organics (Geel, Belgium). Alkyne-functionalized peptides with an N-

terminal 4-pentynoic acid (homopropargyl, hp) modification, hpPLP139–151 (hp-

HSLGKWLGHPDKF-OH) and hpLABL (hp-ITDGEATDSG-OH) were purchased from 

Biomatik (Cambridge, ON, Canada). Unmodified PLP139–151 (NH2-HSLGKWLGHPDKF-

OH) used for rechallenge was purchased from PolyPeptide Laboratories (San Diego, CA). 
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Fluo-4 AM was purchased from Thermo Fisher Scientific (Waltham, MA). Raji B-cells were 

obtained from American Type Culture Collection (ATCC, Manassas, VA). Affinity purified 

F(ab’)2 fragment goat anti-human IgM was purchased from Jackson ImmunoResearch 

Laboratories (West Grove, PA). Incomplete Freund’s adjuvant (IFA) and killed 

Mycobacterium tuberculosis strain H37RA were purchased from Difco (Sparks, MD). 

Pertussis toxin was purchased from List Biological Laboratories (Campbell, CA). R-

phycoerythrin (PE)/Cy7-conjugated anti-mouse CD3, PE-conjugated anti-mouse CD86, 

FITC-conjugated anti-mouse CD80, and respective isotype control antibodies were 

purchased from BioLegend (San Diego, CA). All other chemicals and reagents were 

analytical grade and used as received.

Synthesis and Characterization of Varied Valency Conjugates

SAgAPLP and SAgAPLP:LABL were synthesized using click chemistry as previously 

reported35, where varied valency was attained by varying reactant hpPLP and hpLABL 

equivalents per HA-azide and assessing conjugation by RPHPLC. Briefly, a two-step 

procedure was used to synthesize the conjugates used in this study. 16 kD sodium 

hyaluronate was reacted with 3-(ethyliminomethyleneamino)-N,N-dimethylpropan-1-amine 

(EDC) and N-hydroxysuccinimide (NHS) before the addition of H2N-PEG3-N3. The product 

was dialyzed and lyophilized to yield hyaluronan-PEG3-N3 (HA). hpPLP139–151 and/or 

hpLABL were reacted with azide-modified HA in 50 mM phosphate buffer at room 

temperature over 24h in the presence of tris(3-hydroxypropyltriazolylmethyl)amine 

(THPTA), copper (II) sulfate pentahydrate (CuSO4·5H2O), and sodium ascorbate (NaAsc). 

SAgAs were analyzed quantitatively by RP-HPLC to assess target conjugation efficiencies 

(Supp. Fig. 1).

Raji B Cell Culture

Raji B-cells were cultured in RPMI-1640 media with L-glutamine, 10% fetal bovine serum 

(FBS), and 1% penicillin/streptomycin (P/S) at 37 °C and 5% CO2. Calcium flux was 

performed only after cells reached confluency after 2 weeks of culture and before 8 passages 

were reached. Cells were split 1:10 once every 3 days, and calcium flux was performed on 

the second day after splitting (Raji B-cells in saturated culture at day 3 did not consistently 

respond to IgM stimulation).

Calcium Flux Experiments

Calcium flux experiments were conducted as previously reported by our group36. Briefly, 

Raji B-cells were loaded with 5 μM Fluo-4 for 30 minutes at room temperature. Cells were 

washed and resuspended in Hank Balanced Salt Solution (HBSS) before establishing a 

baseline fluorescence level on the flow cytometer for 60s. Raji B-cells were stimulated with 

20 μg/mL goat anti-human IgM, and stimulated fluorescence was measured for another 60s. 

Stimulated cells were then treated with varied valency conjugates (dosed on a 353.18 μM 

PLP basis), and fluorescence was read for an additional 180s. Data were analyzed by 

FlowJo, Kaluza, and GraphPad Prism.
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Induction of EAE

EAE was induced as previously described40–41 in 4–6 week-old, female SJL/J mice from 

Envigo Laboratories. Mice were housed under specified, pathogen-free conditions at the 

University of Kansas and under an approved protocol by the University’s Institutional 

Animal Care and Use Committee. EAE was induced by subcutaneously administering mice 

with 200 μg of PLP in a 0.2 mL emulsion of Complete Freund’s Adjuvant (CFA). The CFA 

mixture was produced from equal volumes of PBS and IFA containing killed 

Mycobacterium tuberculosis strain H37RA at a final concentration of 4 mg/mL. The 

immunization was administered as four, 50 μL injections above the shoulders and the flanks. 

An additional 200 ng of pertussis toxin was given intraperitoneally on the same day of 

immunization (day 0) as well as day 2 post-immunization. Mice were weighed each day of 

the study and monitored with clinical scores starting on day 7.

Spleen Harvest and Splenocyte Isolation

Splenocytes were harvested from EAE and healthy control mice at peak of disease (Day 12 

post-induction). Spleen harvest and splenocyte isolation was conducted as previously 

reported35. Briefly, spleens were passed through a wire mesh using the rubber stopper of a 

sterile 1 mL syringe in RPMI-1640 media. The strained cellular extracts were centrifuged, 

and the cell pellet was resuspended in red blood cell lysis buffer. The cells were incubated 

on ice for 3.5 minutes to lyse splenic red blood cells. The lysis reaction was stopped by 

adding 10 mL RPMI 1640 media containing 10% FBS to the mixture before centrifuging. 

The remaining splenocyte pellets were resuspended in fresh media (RPMI 1640 media 

containing 10% FBS and 1% Penicillin-Streptomycin) and plated in 24-well cell culture 

plates at a cell density of 3×106 cells/well as well as a 96-well format at 1×106 cells/well. 

Varied valency conjugates were introduced in triplicate (both for EAE and healthy control 

splenocytes and in two sets per group for flow cytometry and cytokines, respectively) to 

each well at 141.3 μM to replicate dosing from past studies, as well as 25 μM PLP. Each cell 

culture was incubated for 72 hours at 37 °C in a CO2 (5%) incubator.

Fluorescent Staining and Flow Cytometry

Splenocytes were collected from 24-well plates after 72 hours and stained with fluorescent 

antibodies according to manufacturer recommendations. Cells were washed with 1 mL of 

RPMI-1640 + 5% FBS before centrifuging and resuspending in 50 μL of 20 μg/mL TruStain 

fcX blocking antibody (anti-mouse CD16/32 antibody, Biolegend). Cells were incubated on 

ice for 30 minutes before adding the fluorescent antibodies and isotype controls in 50 μL for 

1 hour. For flow cytometry data collection, 30,000 cells per sample were detected using a 

BD FACSFusion cytometer. Data were analyzed using Kaluza, FlowJo, and GraphPad Prism 

software.

Measurement of Cytokines

Following the 72-hour incubation, splenocytes in a 96-well culture plate were centrifuged. 

Supernatants were collected for cytokine analysis (GM-CSF, IFN- γ, IL-2, IL-21, IL-6, 

IL-10, IL-17, IL-23, TNF-α). Marker levels were detected using a U-Plex assay kit 

according to manufacturer instructions (Meso Scale Discovery). Briefly, each plate was 
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coated with 50 μL of multiplex coating solution consisting of linkers and biotinylated 

capture antibodies for each cytokine and incubated on a shaker at 700 rpm for 1 hour at 

room temperature. Following a 3X wash step with 150 μL PBS containing 0.05% Tween 20, 

25 μL of diluent and 25 μL of sample was added to each well and incubated again for 1 hour 

on a shaker at room temperature. Detection antibody was then added at 50 μL/well and 

incubated for 1 hour. Finally, each assay plate was read using the QuickPlex multiplex plate 

reader (Meso Scale Discovery).

Measurement of Cellular Metabolism.

Resazurin (7-hydroxy-3H-phenoxazin-3-one 10-oxide) was incubated with centrifuged 

splenocytes leftover from cytokine supernatant collection to determine cellular metabolism. 

75 μM resazurin was introduced to splenocyte cultures and incubated for 3 hours. Metabolic 

reductive capacity was observed by viewing changes in fluorescence at excitation 560, 

emission 590 (Spectramax M5, Molecular Devices). Background fluorescence were taken 

using RPMI media and subtracted out from splenocyte readings for analysis.

Statistical Analysis

Statistical evaluation was performed using one- and two-way analysis of variance (ANOVA), 

followed by Tukey and Sidak multiple comparison tests. Statistical significance for all 

analyses was set at p<0.05. All statistical analyses were performed using GraphPad Software 

(GraphPad Software Inc.).

RESULTS

Synthesis of Varied-Valency Conjugates.

Soluble antigen arrays displaying antigen (SAgAPLP) or antigen plus inhibitor 

(SAgAPLP:LABL) were synthesized by click chemistry using previously described 

methods35. Reactant quantities of PLP and LABL peptides were titrated to yield constructs 

of varied valency, defined by percent ligand occupancy of the 42 azide-modified sites of a 16 

kD HA backbone and calculated by RP-HPLC (Fig. 1, Supp. Fig. 1). SAgAPLP was 

synthesized in a single batch, where peptide conjugation deviated less than 5% from the 

desired conjugation efficiencies of 10%, 30%, 50%, 70%, and 90% occupancy. For the 

SAgAPLP:LABL, the same efficiencies were targeted for overall valency, though backbone 

occupancy was equally divided between PLP and LABL. Single batch synthesis of these 

constructs maintained conjugation accuracy within 5%, excepting 90% SAgAPLP:LABL, 

where average peptide conjugation peaked at 82%.

Inhibition of Short-Term B-cell Response is Valency-Dependent.

To investigate acute valency-dependent effects of SAgAPLP and SAgAPLP:LABL, an 

immortalized B-cell line (Raji B cells) were loaded with a calcium-indicating fluorochrome 

and stimulated with anti-IgM fragments20. Influx of Ca2+ ions to B cells is critical for 

propagating immunity, and past SAgA studies have demonstrated the inhibition of this 

stimulatory signaling event36. Here, Stimulated B-cells showed distinctly increased peak 

fluorescence over baseline (Fig 2A). Following SAgA treatment, a brief spike was 

consistently observed in Fluo-4 signal intensity and monitoring over the course of three 
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minutes illustrated a net reduction that was normalized against untreated controls (Fig. 2B). 

The degree of reduction by SAgAPLP and SAgAPLP:LABL varied in a valency-dependent 

manner (Fig. 2C). In the one-signal SAgAPLP constructs, reduction trended inversely with 

valency, and the 10% construct elicited a significantly higher reduction in calcium signal 

than both 70% and 90% SAgAPLP. A similar trend was realized in the SAgAPLP:LABL 

cohort; 10% SAgAPLP:LABL reduced Fluo-4 signal significantly more than 70% and 90% 

SAgAPLP:LABL, while 30%, 50%, and 70% constructs each outperformed 90% 

SAgAPLP:LABL. Between SAgAPLP and SAgAPLP:LABL, dosing was maintained on a basis 

of PLP concentration (i.e. the total molar dose of SAgAPLP:LABL was roughly double 

SAgAPLP). For the HA alone control group, molar dose was selected to be equivalent to that 

of the lowest valency SAgA in this study such that this group would convey the highest 

relative number of molecules in solution.

Low-Valency Conjugates Induce Downstream Anergy in Mixed EAE Splenocytes.

Next, varied valency conjugates were tested against EAE splenocytes to investigate whether 

the findings of acute B-cell inhibition could predict outcomes in a more complex system. 

Splenocytes were harvested from healthy mice and from EAE mice at peak of disease. We 

incubated cells with a rechallenge of autoantigen epitope PLP139–151 to prompt stimulation 

of antigen-specific immunity in the presence of varied valency SAgAs. After a 72 hour 

incubation, samples were labeled for costimulatory markers CD86 and CD80 to assess the 

activation states of antigen-presenting cells (including B-cells). CD3 was also labeled in the 

panel to probe fluctuations in T cells (Fig. 3, Supp. Fig. 3). This study was conducted in two 

separate animal experiments, so population changes were reported as normalized to 

respective vehicle controls for comparison. For both SAgAPLP and SAgAPLP:LABL 

treatments, valency correlated with CD86 expression at 72 hours. Only low valency 

conjugates (10% SAgAPLP, 10% SAgAPLP:LABL and 30% SAgAPLP:LABL) were statistically 

similar to healthy controls for each replicate, though all SAgAs tested elicited a decreased 

expression of this costimulatory marker (Fig. 3A). Interestingly, CD80 expression showed 

the inverse; the same low valency conjugates exhibited the highest CD80 expression, which 

may have indicated a regulatory phenotype when taken in conjunction with decreased CD86 

and higher levels of T cells42–45. The 10% SAgAPLP treatment doubled CD80 expression 

compared to the healthy control, and 10% and 30% SAgAPLP:LABL remained comparable to 

the healthy control. When comparing the healthy control and all SAgAs, an increase in 

CD80 expression was consistently observed (Fig. 3B). SAgA treatment generally increased 

CD3+ populations with the exception of 70% and 90% SAgAPLP (Fig. 3C). Additional 

analysis of CD86 dot plots for the historically reported, 50% conjugated SAgAPLP:LABL 

compared with low valency 10% SAgAPLP:LABL revealed substantial CD86 downregulation 

(Fig. 3D).

Changes in cell metabolism were also investigated in splenocytes treated with varied valency 

conjugates (Fig. 4). Elevated metabolism is a hallmark of a stimulated immune response, so 

here we assessed decreases in metabolism to indicate inhibited immunity. The resazurin 

metabolic assay was employed toward this end, as this compound is reduced to fluorescent 

resorfurin in the presence of NADH, thus allowing quantification of cell respiration. In EAE 

splenocytes (Fig. 4A), SAgAPLP, but not SAgAPLP:LABL evoked significant decreases in 
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resazurin metabolism. Notably, in healthy splenocytes (Fig. 4B), only low valency 10% 

SAgAPLP did not increase metabolism, while SAgAPLP:LABL treatment largely did not affect 

metabolic outcomes. Cytokine analysis was also performed for EAE splenocytes treated 

with SAgAPLP and SAgAPLP:LABL (Fig. 4C, Supp. Fig. 4). These biomarkers provide 

signals, which can indicate the stimulatory or tolerogenic nature of an immune response. 

Interestingly, two distinct signatures were apparent. SAgAPLP was characterized by non-

valency discriminate increases in IL-6 and anti-inflammatory Il-10, with a decrease in T cell 

proliferation suggested by reduced Il-2. However, low valency conjugates elicited smaller 

increases in Il-17 and Il-12, indicating less inflammation and costimulatory antigen-

presentation. Inflammatory Il-17 production was markedly increased by cells treated with 

SAgAPLP:LABL conjugates, and the cytokines Il-6 and TNF-α increased to a lesser extent.

DISCUSSION

While the number of antigens is an important characteristic for directing the type and 

magnitude of immune response1–3, the valency at which antigens are presented along a 

polymeric backbone requires further exploration. In recent work by Arthur et al., allogenic 

responses to blood transfusions were exacerbated by red blood cells containing high levels 

of alloantigen, but stifled by cells engineered to carry a low level of alloantigen4. In 2018, 

the Jewell group showed that quantum dots displaying low antigen density were superior to 

those loaded with high levels of antigen in terms of evoking tolerance5. Interestingly, this 

work focused on the modulation of dendritic cells as a mechanism, where nonspecific 

endocytosis drives effect. Certainly, nonspecific dendritic cell modulation was shown to be 

feasible in our system as well35, but SAgAs are differentially capable of antigen-specific B-

cell receptor engagement by virtue of a flexible, soluble polymeric backbone. In our present 

study, we evaluated the titration of antigen valency using this system, where distinct antigen-

specific modulation of B-cells has been reported in autoimmune disease models34–36.

The work presented here built from the mechanistic foundations that have positioned B cells 

as key targets of the SAgA mechanism34–36. In past work elucidating these insights, we 

found SAgAs to be capable of specifically engaging B cells and inhibiting the acute (t = 

minutes) influx of Ca2+ ions necessary to propagate immunity36. Later, we found these 

short-term changes observed ex vivo were correlated to in vivo efficacy34. and Ex vivo 
costimulatory marker downregulation and a humoral skewing of immunity were also 

correlated to in vivo SAgA mechanisms of EAE prevention35.

Here, both acute-phase (Fig. 2) and downstream response (Fig. 3, Fig. 4) assays showed 

immunomodulatory outcomes were that were highly dependent on SAgA antigen valency 

(Fig. 5). For the short-term reduction of calcium signaling in Raji B-cells, both SAgAPLP 

and SAgAPLP:LABL showed an inverse relationship of similar magnitudes between calcium 

inhibition and PLP valency (Fig. 5A). Similar trending was observed when mixed EAE 

splenocytes were treated with SAgAs for 72 hours. CD86+ cells decreased with valency, 

meaning SAgAPLP and SAgAPLP:LABL of low PLP conjugation translated to the highest 

reductions of this costimulatory marker (Fig. 5B). Together, these data suggest that low 

valency, but not monovalent, antigen display is able to evoke the most potent 

immunosuppressive effects in both the acute and downstream frames of immunity.
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Interestingly, SAgAPLP:LABL showed an apparent advantage over SAgAPLP in acute phase 

calcium inhibition that was not observed in the splenocyte experiments (Fig. 5A). While not 

statistically definitive, this discrepancy could be due to increased binding avidity afforded by 

the inclusion of LABL, which may allow SAgAPLP:LABL to engage and persist at the cell 

surface through binding ICAM-1 in addition to B-cell receptors. This marginal increase in 

short-term performance does not appear to critical to downstream effect, as CD86 

downregulation of SAgAPLP:LABL mirrored SAgAPLP (Fig. 4B). The splenocyte experiment 

demonstrated a clear valency-dependent trend was maintained wherein the lowest valency 

SAgAPLP and SAgAPLP:LABL reduced CD86 expression to the greatest extent. Notably, this 

effect was found to inversely trend with CD80, another common marker of costimulation 

(Fig. 3B). While initially unexpected, reports have indicated CD80 in the absence of CD86, 

directs inhibition of T cells when regulatory T and B subsets are prevalent42–45. The 

potential for this phenomenon to explain the data we observed is substantiated by an overall 

increase in T cell populations (possibly reflecting an increase in Tregs caused by SAgA 

treatment, Fig. 3C), though future studies are necessary to evaluate fully.

Generally, incubation of EAE splenocytes with SAgAs led to a decreased metabolism after 

72 hours (Fig. 4A). In healthy splenocytes, 10% SAgAPLP and all SAgAPLP:LABL exhibited 

resazurin levels comparable to vehicle-treated control, but SAgAPLP of valency 30% and 

higher caused an elevated metabolism. This finding may be due to the higher antigen 

number of SAgAPLP over SAgAPLP:LABL triggering more immunogenicity, though this 

change did not translate to a stimulated immune response overall (Supp. Fig. 3). Cytokine 

responses between SAgAPLP and SAgAPLP:LABL seemed distinct, possibly highlighting a 

difference in signaling pathways created by the inclusion of LABL (Fig. 4C). In SAgAPLP, a 

robust Il-10 response with the elevation of many other markers was consistent with past 

work, but the increased Il-17 response in SAgAPLP:LABL treated splenocytes was atypical. 

Differences in cytokines did not, however, translate to altered cell phenotypes (Fig. 3).

Adding to the valency dependencies outlined in this work, acute B cell calcium flux 

inhibition was found to be highly correlative of CD86 expression in a mixed population of 

splenocytes (Fig. 5C). The implication of this observation further substantiates our past 

investigations of B cells as a key target of SAgAs for effect. While other mechanisms may 

aid in SAgA efficacy, fold change in calcium flux in this experiment proved informative for 

long-term (72 hours) outcomes in a more complex, mixed system of splenocytes. Ultimately, 

correlations between antigen valency, calcium flux reduction, and CD86 expression were all 

highly significant (Fig. 5D).

CONCLUSIONS

SAgAs were found to be capable of modulating B-cell calcium signaling and mixed 

splenocyte CD86 expression in a valency-dependent fashion. SAgAs were most effective 

when antigen valency was low, reflecting Dintzis’ “rules” with greater resolution than 

previously elucidated46. SAgAs displaying 4–7 PLP were most effective, overshadowing the 

conventional, albeit effective SAgA constructs displaying 10 PLP, which have been the focal 

point of our prior studies. Furthermore, the level of acute B-cell inhibition studied in 

isolation correlated with downregulation of CD86 in splenocytes. Together, studies indicated 
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SAgA valency was an important driver of immune response, which casts light on the role of 

valency when designing antigen-specific immunotherapies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Synthesis of varied valency conjugates. Antigen-only (SAgAPLP) and antigen plus inhibitor 

(SAgAPLP:LABL) conjugates were synthesized by click chemistry according to varied target 

conjugation efficiencies for each 16 kD HA backbone. RP-HPLC was used for 

characterization, and calculated peptide conjugations are reported.
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Fig. 2. 
Calcium flux was used as a measure of acute B-cell response by varied valency conjugates. 

A) Raji B-cells were loaded with Fluo-4 as a fluorescent calcium indicator and stimulated 

with IgM. Fluo-4 signal was increased from baseline (left) after stimulation (right). B) Acute 

B-cell inhibition was measured by stimulating Raji B-cells for 60 s, followed by treatment 

with varied valency conjugates. After treatment, mean fluorescence intensity was monitored 

for 180s and compared to the 60 second stimulation period. C) Reduced calcium signaling 

by one-signal varied valency conjugates (SAgAPLP, blue), two-signal varied valency 

conjugates (SAgAPLP:LABL, red), monovalent PLP and azide-modified HA alone (white). (n 
> 3/group, *p < 0.05, **p < 0.01).
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Fig. 3. 
Mixed splenocytes were harvested from EAE mice at peak of disease, treated with varied 

valency conjugates, and rechallenged with 25 μM PLP for 72h. Following the incubation, 

cells were fluorescently labeled and analyzed by flow cytometry, where changes in A) 
CD86, B) CD80, and C) CD3 were compared to healthy control splenocytes (HC). All 

values are expressed in terms of fold-change as compared to vehicle treated EAE 

splenocytes. D) CD86 changes are shown by dot plot for PBS-treated EAE spenocytes, as 

well as those treated with low-valency SAgAPLP:LABL or SAgAPLP:LABL of typical valency 

from previous reports. (n = 3/group, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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Fig. 4. 
A) EAE splenocytes treated with varied valency conjugates and 25 μM PLP rechallenge. 

Groups were incubated with resazurin after 72 hr to assess differences in cell metabolism. B) 
Likewise, healthy splenocytes were treated with varied valency conjugates and 25 μM PLP 

and subsequently incubated with resazurin after 72 hr. C) Supernatants were collected from 

conjugate-treated EAE splenocytes and analyzed for GM-CSF, IFN- γ, Il-10, Il-12, Il-17, 

Il-2, Il-23, Il-6, and TNF-α. (n = 3/group, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 

0.0001).
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Fig. 5. 
Inhibitory outcomes from treating EAE splenocytes with varied valency conjugates were 

assessed according to PLP valency, including A) acute inhibition of B-cells and B) CD86 

expression. Pearson correlation coefficients were calculated for each comparison. C) 
Correlation between acute B-cell inhibition and downstream CD86+ expression was also 

investigated. D) The relationship between PLP valency, calcium flux reduction, and CD86 

expression changes was collectively analyzed to form a correlation matrix where Pearson 

correlation coefficients were expressed. In Figures 5A and 5C, data points for 90% 

SAgAPLP:LABL are omitted for clarity, but readouts from this group are applied for the 

analysis in Figures 5D.
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