1,907 research outputs found

    A novel hyperekplexia-causing mutation in the pre-transmembrane segment 1 of the human glycine receptor alpha1 subunit reduces membrane expression and impairs gating by agonists

    Get PDF
    In this study, we have compared the functional consequences of three mutations (R218Q, V260M, and Q266H) in the 1 subunit of the glycine receptor (GlyRA1) causing hyperekplexia, an inherited neurological channelopathy. In HEK-293 cells, the agonist EC50s for glycine- activated Cl currents were increased from 26 M in wtGlyRA1, to 5747, 135, and 129 M in R218Q, V260M, and Q266H GlyRA1 channels, respectively. Cl currents elicited by -alanine and taurine, which behave as agonists at wtGlyRA1, were decreased in V260M and Q266H mutant receptors and virtually abolished in GlyRA1 R218Q receptors. Gly-gated Cl currents were similarly antagonized by low concentrations of strychnine in both wild-type (wt) and R218Q GlyRA1 channels, suggesting that the Arg-218 residue plays a crucial role in GlyRA1 channel gating, with only minor effects on the agonist/ antagonist binding site, a hypothesis supported by our molecular model of the GlyRA1 subunit. The R218Q mutation, but not the V260M or the Q266H mutation, caused a marked decrease of receptor subunit expression both in total cell lysates and in isolated plasma membrane proteins. This decreased expression does not seem to explain the reduced agonist sensitivity of GlyRA1 R218Q channels since no difference in the apparent sensitivity to glycine or taurine was observed when wtGlyRA1 receptors were expressed at levels comparable with those of R218Q mutant receptors. In conclusion, multiple mechanisms may explain the dramatic decrease in GlyR function caused by the R218Q mutation, possibly providing the molecular basis for its association with a more severe clinical phenotype

    Predicting discharge to institutional long-term care after stroke: a systematic review & meta-analysis

    Get PDF
    Background/Objectives: Stroke is a leading cause of disability worldwide, and a significant proportion of stroke survivors require long-term institutional care. Understanding who cannot be discharged home is important for health and social care planning. Our aim was to establish predictive factors for discharge to institutional care after hospitalization for stroke. Design: We registered and conducted a systematic review and meta-analysis (PROSPERO: CRD42015023497) of observational studies. We searched MEDLINE, EMBASE, and CINAHL Plus to February 2017. Quantitative synthesis was performed where data allowed. Setting: Acute and rehabilitation hospitals. Participants: Adults hospitalized for stroke who were newly admitted directly to long-term institutional care at the time of hospital discharge. Measurements: Factors associated with new institutionalization. Results: From 10,420 records, we included 18 studies (n = 32,139 participants). The studies were heterogeneous and conducted in Europe, North America, and East Asia. Eight studies were at high risk of selection bias. The proportion of those surviving to discharge who were newly discharged to long-term care varied from 7% to 39% (median 17%, interquartile range 12%), and the model of care received in the long-term care setting was not defined. Older age and greater stroke severity had a consistently positive association with the need for long-term care admission. Individuals who had a severe stroke were 26 times as likely to be admitted to long-term care than those who had a minor stroke. Individuals aged 65 and older had a risk of stroke that was three times as great as that of younger individuals. Potentially modifiable factors were rarely examined. Conclusion: Age and stroke severity are important predictors of institutional long-term care admission directly from the hospital after an acute stroke. Potentially modifiable factors should be the target of future research. Stroke outcome studies should report discharge destination, defining the model of care provided in the long-term care setting

    Evidence for an increase in cosmogenic 10Be during a geomagnetic reversal

    Get PDF
    Reversals in the geomagnetic field, which occur every few hundred thousand years, represent a dramatic change in the Earth's environment. Although there is no satisfactory theory for such reversals, it is generally accepted that the dipole field intensity decreases to <20% of its 'normal' value for a few thousand years during the change in direction. Because the galactic and solar cosmic rays which impinge on the Earth's atmosphere are charged, a significant fraction (about half) of them are deflected by the geomagnetic field. At the time of a reversal, this magnetic shielding is greatly reduced, and it has been suggested that the increased flux of high-energy particles could have effects on evolutionary or climatic processes. For example, the statistically significant coincidence in levels of some marine faunal extinctions and reversal boundaries in ocean sediments could be caused, directly or indirectly, by the decreased geomagnetic intensity during the reversal. We report here evidence in marine sediments for an increase in cosmogenic 10Be production in the Earth's atmosphere during the Brunhes-Matuyama reversal 730,000 yr ago. In addition to confirming an increase in cosmogenic isotope production, the results provide information on the magnitude and duration of the geomagnetic intensity decrease during such an event, and the depth at which remanent magnetism is acquired in marine sediments

    What parameters affect left ventricular diastolic flow propagation velocity? in vitro studies using color m-mode doppler echocardiography

    Get PDF
    BACKGROUND: Insufficient data describe the relationship of hemodynamic parameters to left ventricular (LV) diastolic flow propagation velocity (Vp) measured using color M-mode Doppler echocardiography. METHODS: An in vitro LV model used to simulate LV diastolic inflow with Vp measured under conditions of varying: 1) Stroke volume, 2) heart rate (HR), 3) LV volume, 4) LV compliance, and 5) transmitral flow (TMF) waveforms (Type 1: constant low diastasis flow and Type 2: no diastasis flow). RESULTS: Univariate analysis revealed excellent correlations of Vp with stroke volume (r = 0.98), LV compliance (r = 0.94), and HR with Type 1 TMF (r = 0.97). However, with Type 2 TMF, HR was not associated with Vp. LV volume was not related to Vp under low compliance, but inversely related to Vp under high compliance conditions (r = -0.56). CONCLUSION: These in vitro findings may help elucidate the relationship of hemodynamic parameters to early diastolic LV filling

    Zelda Binding in the Early Drosophila melanogaster Embryo Marks Regions Subsequently Activated at the Maternal-to-Zygotic Transition

    Get PDF
    The earliest stages of development in most metazoans are driven by maternally deposited proteins and mRNAs, with widespread transcriptional activation of the zygotic genome occurring hours after fertilization, at a period known as the maternal-to-zygotic transition (MZT). In Drosophila, the MZT is preceded by the transcription of a small number of genes that initiate sex determination, patterning, and other early developmental processes; and the zinc-finger protein Zelda (ZLD) plays a key role in their transcriptional activation. To better understand the mechanisms of ZLD activation and the range of its targets, we used chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-Seq) to map regions bound by ZLD before (mitotic cycle 8), during (mitotic cycle 13), and after (late mitotic cycle 14) the MZT. Although only a handful of genes are transcribed prior to mitotic cycle 10, we identified thousands of regions bound by ZLD in cycle 8 embryos, most of which remain bound through mitotic cycle 14. As expected, early ZLD-bound regions include the promoters and enhancers of genes transcribed at this early stage. However, we also observed ZLD bound at cycle 8 to the promoters of roughly a thousand genes whose first transcription does not occur until the MZT and to virtually all of the thousands of known and presumed enhancers bound at cycle 14 by transcription factors that regulate patterned gene activation during the MZT. The association between early ZLD binding and MZT activity is so strong that ZLD binding alone can be used to identify active promoters and regulatory sequences with high specificity and selectivity. This strong early association of ZLD with regions not active until the MZT suggests that ZLD is not only required for the earliest wave of transcription but also plays a major role in activating the genome at the MZT

    Oxytocin and Vasopressin Involved in Restraint Water-Immersion Stress Mediated by Oxytocin Receptor and Vasopressin 1b Receptor in Rat Brain

    Get PDF
    Aims: Vasopressin (AVP) and oxytocin (OT) are considered to be related to gastric functions and the regulation of stress response. The present study was to study the role of vasopressinergic and oxytocinergic neurons during the restraint waterimmersion stress. Methods: Ten male Wistar rats were divided into two groups, control and RWIS for 1h. The brain sections were treated with a dual immunohistochemistry of Fos and oxytocin (OT) or vasopressin (AVP) or OT receptor or AVP 1b receptor (V1bR). Results: (1) Fos-immunoreactive (Fos-IR) neurons dramatically increased in the hypothalamic paraventricular nucleus (PVN), the supraoptic nucleus (SON), the neucleus of solitary tract (NTS) and motor nucleus of the vagus (DMV) in the RWIS rats; (2) OT-immunoreactive (OT-IR) neurons were mainly observed in the medial magnocellular part of the PVN and the dorsal portion of the SON, while AVP-immunoreactive (AVP-IR) neurons mainly distributed in the magnocellular part of the PVN and the ventral portion of the SON. In the RWIS rats, Fos-IR neurons were indentified in 31 % of OT-IR neurons and 40 % of AVP-IR neurons in the PVN, while in the SON it represented 28%, 53 % respectively; (3) V 1bR-IR and OTR-IR neurons occupied all portions of the NTS and DMV. In the RWIS rats, more than 10 % of OTR-IR and V1bR-IR neurons were activated in the DMV, while lower ratio in the NTS. Conclusion: RWIS activates both oxytocinergic and vasopressinergic neurons in the PVN and SON, which may project to th

    Supervised exercise training as an adjunctive therapy for venous leg ulcers: study protocol for a randomised controlled trial

    Get PDF
    Background: Venous leg ulcers are common, chronic wounds that are painful and reduce quality of life. Compression therapy is known to assist in the healing of venous leg ulceration. Supervised exercise training that targets an improvement in calf muscle pump function might be a useful adjunctive therapy for enhancing ulcer healing and other aspects of physical and mental health. However, the evidence of exercise for individuals with venous ulcers is sparse. Here, we describe the protocol for a study that aims to assess the feasibility of undertaking a randomised controlled trial of a supervised exercise programme in people who are receiving compression for venous ulceration. Methods/Design: This is a randomised, controlled, assessor-blinded, two-centre, feasibility trial with two parallel groups. Eighty adults who are receiving lower-limb compression for a venous leg ulcer will be randomly assigned to receive usual care (compression only) or usual care plus a 12-week supervised exercise programme. Participants in the exercise group will be invited to undertake three, 60-minute sessions of supervised exercise each week, and each session will involve a combination of treadmill walking, upright cycling and strength and flexibility exercises for the lower limbs. Participants will be assessed before randomisation and 3, 6 and 12 months after randomisation. Primary outcomes include rates of recruitment, retention and adherence. Secondary outcomes include time to ulcer healing, proportion of participants healed, percentage and absolute change in ulcer size, health-related quality of life (EQ-5D-5L and VEINES-QOL/Sym), lower-limb cutaneous microvascular function (laser Doppler flowmetry coupled with iontophoresis) and physical fitness (30-second sit-to-stand test, chair sit and reach test, 6-minute walk test and ankle range of motion). The costs associated with the exercise programme and health-care utilisation will be calculated. We will also complete interviews with a sub-sample of participants to explore their experiences of having a venous ulcer and the acceptability of the exercise intervention and study procedures. Discussion: Data from this study will be used to refine the supervised exercise programme, investigate the acceptability of the intervention and study design and determine the most appropriate outcome measures, thereby providing estimates of the factors needed to design an adequately powered trial across several centres

    Mapping the contribution of β3-containing GABA(A )receptors to volatile and intravenous general anesthetic actions

    Get PDF
    BACKGROUND: Agents belonging to diverse chemical classes are used clinically as general anesthetics. The molecular targets mediating their actions are however still only poorly defined. Both chemical diversity and substantial differences in the clinical actions of general anesthetics suggest that general anesthetic agents may have distinct pharmacological targets. It was demonstrated previously that the immobilizing action of etomidate and propofol is completely, and the immobilizing action of isoflurane partly mediated, by β3-containing GABA(A )receptors. This was determined by using the β3(N265M) mice, which carry a point mutation known to decrease the actions of general anesthetics at recombinant GABA(A )receptors. In this communication, we analyzed the contribution of β3-containing GABA(A )receptors to the pharmacological actions of isoflurane, etomidate and propofol by means of β3(N265M) mice. RESULTS: Isoflurane decreased core body temperature and heart rate to a smaller degree in β3(N265M) mice than in wild type mice, indicating a minor but significant role of β3-containing GABA(A )receptors in these actions. Prolonged time intervals in the ECG and increased heart rate variability were indistinguishable between genotypes, suggesting no involvement of β3-containing GABA(A )receptors. The anterograde amnesic action of propofol was indistinguishable in β3(N265M) and wild type mice, suggesting that it is independent of β3-containing GABA(A )receptors. The increase of heart rate variability and prolongation of ECG intervals by etomidate and propofol were also less pronounced in β3(N265M) mice than in wild type mice, pointing to a limited involvement of β3-containing GABA(A )receptors in these actions. The lack of etomidate- and propofol-induced immobilization in β3(N265M) mice was also observed in congenic 129X1/SvJ and C57BL/6J backgrounds, indicating that this phenotype is stable across different backgrounds. CONCLUSION: Our results provide evidence for a defined role of β3-containing GABA(A )receptors in mediating some, but not all, of the actions of general anesthetics, and confirm the multisite model of general anesthetic action. This pharmacological separation of anesthetic endpoints also suggests that subtype-selective substances with an improved side-effect profile may be developed

    P. falciparum Modulates Erythroblast Cell Gene Expression in Signaling and Erythrocyte Production Pathways

    Get PDF
    Global, genomic responses of erythrocytes to infectious agents have been difficult to measure because these cells are e-nucleated. We have previously demonstrated that in vitro matured, nucleated erythroblast cells at the orthochromatic stage can be efficiently infected by the human malaria parasite Plasmodium falciparum. We now show that infection of orthochromatic cells induces change in 609 host genes. 592 of these transcripts are up-regulated and associated with metabolic and chaperone pathways unique to P. falciparum infection, as well as a wide range of signaling pathways that are also induced in related apicomplexan infections of mouse hepatocytes or human fibroblast cells. Our data additionally show that polychromatophilic cells, which precede the orthochromatic stage and are not infected when co-cultured with P. falciparum, up-regulate a small set of genes, at least two of which are associated with pathways of hematopoiesis and/or erythroid cell development. These data support the idea that P. falciparum affects erythropoiesis at multiple stages during erythroblast differentiation. Further P. falciparum may modulate gene expression in bystander erythroblasts and thus influence pathways of erythrocyte development. This study provides a benchmark of the host erythroblast cell response to infection by P. falciparum
    corecore