44 research outputs found

    Premature mortality in refractory partial epilepsy: does surgical treatment make a difference?

    Get PDF
    Background: Epilepsy carries an increased risk of premature death. For some people with intractable focal epilepsy, surgery offers hope for a seizure-free life. The authors aimed to see whether epilepsy surgery influenced mortality in people with intractable epilepsy. Methods: The authors audited survival status in two cohorts (those who had surgery and those who had presurgical assessment but did not have surgery). Results: There were 40 known deaths in the non-surgical group (3365 person years of follow-up) and 19 in the surgical group (3905 person-years of follow-up). Non-operated patients were 2.4 times (95% CI 1.4 to 4.2) as likely to die as those who had surgery. They were 4.5 times (95% CI 1.9 to 10.9) as likely to die a probable epilepsy-related death. In the surgical group, those with ongoing seizures 1 year after surgery were 4.0 (95% CI 1.2 to 13.7) times as likely to die as those who were seizure-free or who had only simple partial seizures. Time-dependent Cox analysis showed that the yearly outcome group did not significantly affect mortality (HR 1.3, 95% CI 0.9 to 1.8). Conclusion: Successful epilepsy surgery was associated with a reduced risk of premature mortality, compared with those with refractory focal epilepsy who did not have surgical treatment. To some extent, the reduced mortality is likely to be conferred by inducing freedom from seizures. It is not certain whether better survival is attributable only to surgery, as treatment decisions were not randomised, and there may be inherent differences between the groups.<br/

    Breast cancer risk genes: association analysis in more than 113,000 women

    Get PDF
    BACKGROUNDGenetic testing for breast cancer susceptibility is widely used, but for many genes, evidence of an association with breast cancer is weak, underlying risk estimates are imprecise, and reliable subtype-specific risk estimates are lacking.METHODSWe used a panel of 34 putative susceptibility genes to perform sequencing on samples from 60,466 women with breast cancer and 53,461 controls. In separate analyses for protein-truncating variants and rare missense variants in these genes, we estimated odds ratios for breast cancer overall and tumor subtypes. We evaluated missense-variant associations according to domain and classification of pathogenicity.RESULTSProtein-truncating variants in 5 genes (ATM, BRCA1, BRCA2, CHEK2, and PALB2) were associated with a risk of breast cancer overall with a P value of less than 0.0001. Protein-truncating variants in 4 other genes (BARD1, RAD51C, RAD51D, and TP53) were associated with a risk of breast cancer overall with a P value of less than 0.05 and a Bayesian false-discovery probability of less than 0.05. For protein-truncating variants in 19 of the remaining 25 genes, the upper limit of the 95% confidence interval of the odds ratio for breast cancer overall was less than 2.0. For protein-truncating variants in ATM and CHEK2, odds ratios were higher for estrogen receptor (ER)-positive disease than for ER-negative disease; for protein-truncating variants in BARD1, BRCA1, BRCA2, PALB2, RAD51C, and RAD51D, odds ratios were higher for ER-negative disease than for ER-positive disease. Rare missense variants (in aggregate) in ATM, CHEK2, and TP53 were associated with a risk of breast cancer overall with a P value of less than 0.001. For BRCA1, BRCA2, and TP53, missense variants (in aggregate) that would be classified as pathogenic according to standard criteria were associated with a risk of breast cancer overall, with the risk being similar to that of protein-truncating variants.CONCLUSIONSThe results of this study define the genes that are most clinically useful for inclusion on panels for the prediction of breast cancer risk, as well as provide estimates of the risks associated with protein-truncating variants, to guide genetic counseling. (Funded by European Union Horizon 2020 programs and others.)Molecular tumour pathology - and tumour geneticsMTG1 - Moleculaire genetica en pathologie van borstkanke
    corecore