112 research outputs found

    Recent Emergence of Bovine Coronavirus Variants with Mutations in the Hemagglutinin-Esterase Receptor Binding Domain in U.S. Cattle

    Get PDF
    Bovine coronavirus (BCoV) has spilled over to many species, including humans, where the host range variant coronavirus OC43 is endemic. The balance of the opposing activities of the surface spike (S) and hemagglutinin-esterase (HE) glycoproteins controls BCoV avidity, which is critical for interspecies transmission and host adaptation. Here, 78 genomes were sequenced directly from clinical samples collected between 2013 and 2022 from cattle in 12 states, primarily in the Midwestern U.S. Relatively little genetic diversity was observed, with genomes having \u3e98% nucleotide identity. Eleven isolates collected between 2020 and 2022 from four states (Nebraska, Colorado, California, and Wisconsin) contained a 12 nucleotide insertion in the receptor-binding domain (RBD) of the HE gene similar to one recently reported in China, and a single genome from Nebraska collected in 2020 contained a novel 12 nucleotide deletion in the HE gene RBD. Isogenic HE proteins containing either the insertion or deletion in the HE RBD maintained esterase activity and could bind bovine submaxillary mucin, a substrate enriched in the receptor 9-O-acetylated-sialic acid, despite modeling that predicted structural changes in the HE R3 loop critical for receptor binding. The emergence of BCoV with structural variants in the RBD raises the possibility of further interspecies transmission

    Small ruminant lentivirus genetic subgroups associate with sheep TMEM154 genotypes.

    Get PDF
    Abstract: Small ruminant lentiviruses (SRLVs) are prevalent in North American sheep and a major cause of production losses for the U.S. sheep industry. Sheep susceptibility to SRLV infection is influenced by genetic variation within the ovine transmembrane 154 gene (TMEM154). Animals with either of two distinct TMEM154 haplotypes that both encode glutamate at position 35 of the protein (E35) are at greater risk of SRLV infection than those homozygous with a lysine (K35) haplotype. Prior to this study, it was unknown if TMEM154 associations with infection are influenced by SRLV genetic subgroups. Accordingly, our goals were to characterize SRLVs naturally infecting sheep from a diverse U.S. Midwestern flock and test them for associations with TMEM154 E35K genotypes. Two regions of the SRLV genome were targeted for proviral amplification, cloning, sequence analysis, and association testing with TMEM154 E35K genotypes: gag and the transmembrane region of env. Independent analyses of gag and env sequences showed that they clustered in two subgroups (1 and 2), they were distinct from SRLV subtypes originating from Europe, and that subgroup 1 associated with hemizygous and homozygous TMEM154 K35 genotypes and subgroup 2 with hemi- and homozygous E35 genotypes (gag p < 0.001, env p = 0.01). These results indicate that SRLVs in the U.S. have adapted to infect sheep with specific TMEM154 E35K genotypes. Consequently, both host and SRLV genotypes affect the relative risk of SRLV infection in sheep

    Resolving \u3ci\u3eBovine viral diarrhea virus\u3c/i\u3e subtypes from persistently infected U.S. beef calves with complete genome sequence

    Get PDF
    Bovine viral diarrhea virus (BVDV) is classified into 2 genotypes, BVDV-1 and BVDV-2, each of which contains distinct subtypes with genetic and antigenic variation. To effectively control BVDV by vaccination, it is important to know which subtypes of the virus are circulating and how their prevalence is changing over time. Accordingly, the purpose of our study was to estimate the current prevalence and diversity of BVDV subtypes from persistently infected (PI) beef calves in the central United States. Phylogenetic analysis of the 5′-UTR (5′ untranslated region) for 119 virus strains revealed that a majority (82%) belonged to genotype 1b, and the remaining strains were distributed between genotypes 1a (9%) and 2 (8%); however, BVDV-2 subtypes could not be confidently resolved. Therefore, to better define the variability of U.S. BVDV isolates and further investigate the division of BVDV-2 isolates into subtypes, complete genome sequences were obtained for these isolates as well as representatives of BVDV-1a and -1b. Phylogenetic analyses of the complete coding sequence provided more conclusive genetic classification and revealed that U.S. BVDV-2 isolates belong to at least 3 distinct genetic groups that are statistically supported by both complete and individual coding gene analyses. These results show that a more complex set of BVDV-2 subtypes has been circulating in this region than was previously thought

    Resolving \u3ci\u3eBovine viral diarrhea virus\u3c/i\u3e subtypes from persistently infected U.S. beef calves with complete genome sequence

    Get PDF
    Bovine viral diarrhea virus (BVDV) is classified into 2 genotypes, BVDV-1 and BVDV-2, each of which contains distinct subtypes with genetic and antigenic variation. To effectively control BVDV by vaccination, it is important to know which subtypes of the virus are circulating and how their prevalence is changing over time. Accordingly, the purpose of our study was to estimate the current prevalence and diversity of BVDV subtypes from persistently infected (PI) beef calves in the central United States. Phylogenetic analysis of the 5′-UTR (5′ untranslated region) for 119 virus strains revealed that a majority (82%) belonged to genotype 1b, and the remaining strains were distributed between genotypes 1a (9%) and 2 (8%); however, BVDV-2 subtypes could not be confidently resolved. Therefore, to better define the variability of U.S. BVDV isolates and further investigate the division of BVDV-2 isolates into subtypes, complete genome sequences were obtained for these isolates as well as representatives of BVDV-1a and -1b. Phylogenetic analyses of the complete coding sequence provided more conclusive genetic classification and revealed that U.S. BVDV-2 isolates belong to at least 3 distinct genetic groups that are statistically supported by both complete and individual coding gene analyses. These results show that a more complex set of BVDV-2 subtypes has been circulating in this region than was previously thought

    Detection of bovine inflammatory cytokines IL-1β, IL-6, and TNF-α with a multiplex electrochemiluminescent assay platform

    Get PDF
    Commercially available bovine-specific assays are limited in number, and multiplex assays for this species are rare. Our objective was to develop a multiplex assay for the bovine inflammatory cytokines IL-1β, IL-6, and TNFα using the Meso Scale Discovery U-PLEX platform. Do-It-Yourself ELISA kits that contained polyclonal antibodies, both unlabeled and biotinylated, and the specific recombinant bovine cytokine standard, were purchased for each of these three cytokines. The biotinylated antibodies were coupled to linkers that bind to specific locations within each well of the U-PLEX plate. Unique linkers were used for each of the cytokines. The unlabeled antibodies were conjugated with electrochemiluminescent labels to serve as detection antibodies. Each cytokine assay was optimized individually prior to performing an optimization on the multiplex assay containing reagents for all three cytokines. To calculate cytokine concentrations, standard curves were developed using the recombinant cytokines and were run concurrently on each plate. Standard curves for IL-1β and TNF-α were run at concentrations ranging from 0 to 50,000 pg/mL, and for IL-6 from 0 to 10,000 pg/mL. The average lowest level of detection concentration measured by the standard curves were 5.3 pg/mL, 0.92 pg/mL, and 22.34 pg/mL for IL-1β, IL-6, and TNF-α respectively, as determined by data from seven plates containing bovine plasma samples from a combination of healthy and diseased cattle. The U-PLEX platform was a viable means to develop custom analyte- and species-specific multiplex assays using privately developed or purchased sets of commercially available reagents

    Multi-parallel qPCR provides increased sensitivity and diagnostic breadth for gastrointestinal parasites of humans: field-based inferences on the impact of mass deworming

    Get PDF
    BACKGROUND: Although chronic morbidity in humans from soil transmitted helminth (STH) infections can be reduced by anthelmintic treatment, inconsistent diagnostic tools make it difficult to reliably measure the impact of deworming programs and often miss light helminth infections. METHODS: Cryopreserved stool samples from 796 people (aged 2-81 years) in four villages in Bungoma County, western Kenya, were assessed using multi-parallel qPCR for 8 parasites and compared to point-of-contact assessments of the same stools by the 2-stool 2-slide Kato-Katz (KK) method. All subjects were treated with albendazole and all Ascaris lumbricoides expelled post-treatment were collected. Three months later, samples from 633 of these people were re-assessed by both qPCR and KK, re-treated with albendazole and the expelled worms collected. RESULTS: Baseline prevalence by qPCR (n = 796) was 17 % for A. lumbricoides, 18 % for Necator americanus, 41 % for Giardia lamblia and 15% for Entamoeba histolytica. The prevalence was <1% for Trichuris trichiura, Ancylostoma duodenale, Strongyloides stercoralis and Cryptosporidium parvum. The sensitivity of qPCR was 98% for A. lumbricoides and N. americanus, whereas KK sensitivity was 70% and 32%, respectively. Furthermore, qPCR detected infections with T. trichiura and S. stercoralis that were missed by KK, and infections with G. lamblia and E. histolytica that cannot be detected by KK. Infection intensities measured by qPCR and by KK were correlated for A. lumbricoides (r = 0.83, p < 0.0001) and N. americanus (r = 0.55, p < 0.0001). The number of A. lumbricoides worms expelled was correlated (p < 0.0001) with both the KK (r = 0.63) and qPCR intensity measurements (r = 0.60). CONCLUSIONS: KK may be an inadequate tool for stool-based surveillance in areas where hookworm or Strongyloides are common or where intensity of helminth infection is low after repeated rounds of chemotherapy. Because deworming programs need to distinguish between populations where parasitic infection is controlled and those where further treatment is required, multi-parallel qPCR (or similar high throughput molecular diagnostics) may provide new and important diagnostic information

    Increased risk of type I errors in cluster randomised trials with small or medium numbers of clusters: a review, reanalysis,and simulation study

    Get PDF
    Background: Cluster randomised trials (CRTs) are commonly analysed using mixed-effects models or generalised estimating equations (GEEs). However, these analyses do not always perform well with the small number of clusters typical of most CRTs. They can lead to increased risk of a type I error (finding a statistically significant treatment effect when it does not exist) if appropriate corrections are not used. Methods: We conducted a small simulation study to evaluate the impact of using small-sample corrections for mixed-effects models or GEEs in CRTs with a small number of clusters. We then reanalysed data from TRIGGER, a CRT with six clusters, to determine the effect of using an inappropriate analysis method in practice. Finally, we reviewed 100 CRTs previously identified by a search on PubMed in order to assess whether trials were using appropriate methods of analysis. Trials were classified as at risk of an increased type I error rate if they did not report using an analysis method which accounted for clustering, or if they had fewer than 40 clusters and performed an individual-level analysis without reporting the use of an appropriate small-sample correction. Results: Our simulation study found that using mixed-effects models or GEEs without an appropriate correction led to inflated type I error rates, even for as many as 70 clusters. Conversely, using small-sample corrections provided correct type I error rates across all scenarios. Reanalysis of the TRIGGER trial found that inappropriate methods of analysis gave much smaller P values (P ≤ 0.01) than appropriate methods (P = 0.04–0.15). In our review, of the 99 trials that reported the number of clusters, 64 (65 %) were at risk of an increased type I error rate; 14 trials did not report using an analysis method which accounted for clustering, and 50 trials with fewer than 40 clusters performed an individual-level analysis without reporting the use of an appropriate correction. Conclusions: CRTs with a small or medium number of clusters are at risk of an inflated type I error rate unless appropriate analysis methods are used. Investigators should consider using small-sample corrections with mixed-effects models or GEEs to ensure valid results. Abbreviations: CRT, Cluster randomised trial; CI, Confidence interval; GEE, Generalised estimating equations; TRIGGER, Trial in Gastrointestinal Transfusio

    In Vitro and In Vivo Efficacy of Monepantel (AAD 1566) against Laboratory Models of Human Intestinal Nematode Infections

    Get PDF
    Soil-transmitted helminthiases affect more than one billion people among the most vulnerable populations in developing countries. Currently, control of these infections primarily relies on chemotherapy. Only five drugs are available, all of which have been in use for decades. None of the drugs are efficacious using single doses against all soil-transmitted helminths (STH) species and show low efficacy observed against Trichuris trichiura. In addition, the limited availability of current drug treatments poses a precarious situation should drug resistance occur. Therefore, there is great interest to develop novel drugs against infections with STH. Monepantel, which belongs to a new class of veterinary anthelmintics, the amino-acetonitrile derivatives, might be a potential drug candidate in humans. It has been extensively tested against livestock nematodes, and was found highly efficacious and safe for animals. Here we describe the in vitro and in vivo effect of monepantel, on Ancylostoma ceylanicum, Necator americanus, Trichuris muris, Strongyloides ratti, and Ascaris suum, five parasite-rodent models of relevance to human STH. Since we observed that monepantel showed only high activity on one of the hookworm species and lacked activity on the other parasites tested we cannot recommend the drug as a development candidate for human soil-transmitted helminthiases
    • …
    corecore