104 research outputs found

    On Plouffe's Ramanujan Identities

    Full text link
    Recently, Simon Plouffe has discovered a number of identities for the Riemann zeta function at odd integer values. These identities are obtained numerically and are inspired by a prototypical series for Apery's constant given by Ramanujan: ζ(3)=7π3180−2∑n=1∞1n3(e2πn−1)\zeta(3)=\frac{7\pi^3}{180}-2\sum_{n=1}^\infty\frac{1}{n^3(e^{2\pi n}-1)} Such sums follow from a general relation given by Ramanujan, which is rediscovered and proved here using complex analytic techniques. The general relation is used to derive many of Plouffe's identities as corollaries. The resemblance of the general relation to the structure of theta functions and modular forms is briefly sketched.Comment: 19 pages, 3 figures; v4: minor corrections; modified intro; revised concluding statement

    Uncovering Ramanujan's "Lost" Notebook: An Oral History

    Full text link
    Here we weave together interviews conducted by the author with three prominent figures in the world of Ramanujan's mathematics, George Andrews, Bruce Berndt and Ken Ono. The article describes Andrews's discovery of the "lost" notebook, Andrews and Berndt's effort of proving and editing Ramanujan's notes, and recent breakthroughs by Ono and others carrying certain important aspects of the Indian mathematician's work into the future. Also presented are historical details related to Ramanujan and his mathematics, perspectives on the impact of his work in contemporary mathematics, and a number of interesting personal anecdotes from Andrews, Berndt and Ono

    Two-divisibility of the coefficients of certain weakly holomorphic modular forms

    Full text link
    We study a canonical basis for spaces of weakly holomorphic modular forms of weights 12, 16, 18, 20, 22, and 26 on the full modular group. We prove a relation between the Fourier coefficients of modular forms in this canonical basis and a generalized Ramanujan tau-function, and use this to prove that these Fourier coefficients are often highly divisible by 2.Comment: Corrected typos. To appear in the Ramanujan Journa

    Quantum non-demolition (QND) modulation of quantum interference

    Get PDF
    We propose an experiment where quantum interference between two different paths is modulated by means of a QND measurement on one or both the arm of the interferometer. The QND measurement is achieved in a Kerr cell. We illustrate a scheme for the realisation of this experiment and some further developments.Comment: accepted for publicatio

    Physical properties of FeSe0.5_{0.5}Te0.5_{0.5} single crystals grown under different conditions

    Full text link
    We report on structural, magnetic, conductivity, and thermodynamic studies of FeSe0.5_{0.5}Te0.5_{0.5} single crystals grown by self-flux and Bridgman methods. The samples were prepared from starting materials of different purity at various temperatures and cooling rates. The lowest values of the susceptibility in the normal state, the highest transition temperature TcT_c of 14.5 K, and the largest heat-capacity anomaly at TcT_c were obtained for pure (oxygen-free) samples. The critical current density jcj_c of 8×1048 \times 10^4 A/cm2^2 (at 2 K) achieved in pure samples is attributed to intrinsic inhomogeneity due to disorder at the cation and anion sites. The impure samples show increased jcj_c up to 2.3×1052.3 \times 10^5 A/cm2^2 due to additional pinning centers of Fe3_3O4_4. The upper critical field Hc2H_{c2} of ∼500\sim 500 kOe is estimated from the resistivity study in magnetic fields parallel to the \emph{c}-axis. The anisotropy of the upper critical field γHc2=Hc2ab/Hc2c\gamma_{H_{c2}} = H_{_{c2}}^{ab}/H_{_{c2}}^{c} reaches a value ∼6\sim 6 at T⟶TcT\longrightarrow T_c. Extremely low values of the residual Sommerfeld coefficient for pure samples indicate a high volume fraction of the superconducting phase (up to 97%). The electronic contribution to the specific heat in the superconducting state is well described within a single-band BCS model with a temperature dependent gap Δ0=27(1)\Delta_0 = 27(1) K. A broad cusp-like anomaly in the electronic specific heat of samples with suppressed bulk superconductivity is ascribed to a splitting of the ground state of the interstitial Fe2+^{2+} ions. This contribution is fully suppressed in the ordered state in samples with bulk superconductivity.Comment: 11 pages, 11 figures, 3 table

    Sum rules and energy scales in the high-temperature superconductor YBa2Cu3O6+x

    Full text link
    The Ferrell-Glover-Tinkham (FGT) sum rule has been applied to the temperature dependence of the in-plane optical conductivity of optimally-doped YBa_2Cu_3O_{6.95} and underdoped YBa_2Cu_3O_{6.60}. Within the accuracy of the experiment, the sum rule is obeyed in both materials. However, the energy scale \omega_c required to recover the full strength of the superfluid \rho_s in the two materials is dramatically different; \omega_c \simeq 800 cm^{-1} in the optimally doped system (close to twice the maximum of the superconducting gap, 2\Delta_0), but \omega_c \gtrsim 5000 cm^{-1} in the underdoped system. In both materials, the normal-state scattering rate close to the critical temperature is small, \Gamma < 2\Delta_0, so that the materials are not in the dirty limit and the relevant energy scale for \rho_s in a BCS material should be twice the energy gap. The FGT sum rule in the optimally-doped material suggests that the majority of the spectral weight of the condensate comes from energies below 2\Delta_0, which is consistent with a BCS material in which the condensate originates from a Fermi liquid normal state. In the underdoped material the larger energy scale may be a result of the non-Fermi liquid nature of the normal state. The dramatically different energy scales suggest that the nature of the normal state creates specific conditions for observing the different aspects of what is presumably a central mechanism for superconductivity in these materials.Comment: RevTeX 4 file, 9 pages with 7 embedded eps figure

    Five new post-main-sequence debris disks with gaseous emission

    Full text link
    Observations of debris disks, the products of the collisional evolution of rocky planetesimals, can be used to trace planetary activity across a wide range of stellar types. The most common end points of stellar evolution are no exception, as debris disks have been observed around several dozen white dwarf stars. But instead of planetary formation, post-main-sequence debris disks are a signpost of planetary destruction, resulting in compact debris disks from the tidal disruption of remnant planetesimals. In this work, we present the discovery of five new debris disks around white dwarf stars with gaseous debris in emission. All five systems exhibit excess infrared radiation from dusty debris, emission lines from gaseous debris, and atmospheric absorption features indicating ongoing accretion of metal-rich debris. In four of the systems, we detect multiple metal species in emission, some of which occur at strengths and transitions previously unseen in debris disks around white dwarf stars. Our first year of spectroscopic follow-up hints at strong variability in the emission lines that can be studied in the future, expanding the range of phenomena these post-main-sequence debris disks exhibit.Published versio

    Error sources and data limitations for the prediction ofsurface gravity: a case study using benchmarks

    Get PDF
    Gravity-based heights require gravity values at levelled benchmarks (BMs), whichsometimes have to be predicted from surrounding observations. We use EGM2008 andthe Australian National Gravity Database (ANGD) as examples of model and terrestrialobserved data respectively to predict gravity at Australian national levelling network(ANLN) BMs. The aim is to quantify errors that may propagate into the predicted BMgravity values and then into gravimetric height corrections (HCs). Our results indicatethat an approximate ±1 arc-minute horizontal position error of the BMs causesmaximum errors in EGM2008 BM gravity of ~ 22 mGal (~55 mm in the HC at ~2200 melevation) and ~18 mGal for ANGD BM gravity because the values are not computed atthe true location of the BM. We use RTM (residual terrain modelling) techniques toshow that ~50% of EGM2008 BM gravity error in a moderately mountainous regioncan be accounted for by signal omission. Non-representative sampling of ANGDgravity in this region may cause errors of up to 50 mGals (~120 mm for the Helmertorthometric correction at ~2200 m elevation). For modelled gravity at BMs to beviable, levelling networks need horizontal BM positions accurate to a few metres, whileRTM techniques can be used to reduce signal omission error. Unrepresentative gravitysampling in mountains can be remedied by denser and more representative re-surveys,and/or gravity can be forward modelled into regions of sparser gravity
    • …
    corecore