3,054 research outputs found

    Food Security and the Federal Minimum Wage

    Get PDF
    This working paper, by William M. Rodgers III, Hanley S. Chiang, and Bruce W. Klein, estimates the extent to which increases in the U.S. federal minimum wage in October 1996 and September 1997 improved the ability of households to be food secure -- that is, to purchase for their members an adequate supply of nutritional and safe foods. First, the authors show that the two increases significantly altered the hourly wage distribution of householders (principal person in a household). The shifts were greatest among household heads that are minority, single parents, and household heads with no more than a high school diploma. Even after controlling for the link between the 1990s economic expansion and food security, the October 1996 and September 1997 increases in the federal minimum wage raised food security and reduced hunger, particularly in low-income households where householders had completed no more than a high school degree or were a single parent

    Chemical Measurement and Fluctuation Scaling

    Get PDF
    Main abstract: Fluctuation scaling reports on all processes producing a data set. Some fluctuation scaling relationships, such as the Horwitz curve, follow exponential dispersion models which have useful properties. The mean-variance method applied to Poisson distributed data is a special case of these properties allowing the gain of a system to be measured. Here, a general method is described for investigating gain (G), dispersion (β), and process (α) in any system whose fluctuation scaling follows a simple exponential dispersion model, a segmented exponential dispersion model, or complex scaling following such a model locally. When gain and dispersion cannot be obtained directly, relative parameters, GR and βR, may be used. The method was demonstrated on data sets conforming to simple, segmented, and complex scaling. These included mass, fluorescence intensity, and absorbance measurements and specifications for classes of calibration weights. Changes in gain, dispersion, and process were observed in the scaling of these data sets in response to instrument parameters, photon fluxes, mathematical processing, and calibration weight class. The process parameter which limits the type of statistical process that can be invoked to explain a data set typically exhibited 04 possible. With two exceptions, calibration weight class definitions only affected β. Adjusting photomultiplier voltage while measuring fluorescence intensity changed all three parameters (0<α<0.8; 0<βR<3; 0<GR<4.1). The method provides a framework for calibrating and interpreting uncertainty in chemical measurement allowing robust compar ison of specific instruments, conditions, and methods. Supporting information abstract: On first inspection, fluctuation scaling data may appear to approximate a straight line when log transformed. The data presented in figure 5 of the main text gives a reasonable approximation to a straight line and for many purposes this would be sufficient. The purpose of the study of fluorescence intensity was to determine whether adjusting the voltage of a photomultiplier tube while measuring a fluorescent sample changes the process (α), the dispersion (β) and/or the gain (G). In this regard, the linear model established that PMT setting affects more than the gain. However, a detailed analysis beginning with testing for model mis-specification provides additional information. Specifically, Poisson behavior is only seen over a limited wavelength range in the 600 V and 700 V data sets

    Identification of hematomas in mild traumatic brain injury using an index of quantitative brain electrical activity

    Get PDF
    Rapid identification of traumatic intracranial hematomas following closed head injury represents a significant health care need because of the potentially life-threatening risk they present. This study demonstrates the clinical utility of an index of brain electrical activity used to identify intracranial hematomas in traumatic brain injury (TBI) presenting to the emergency department (ED). Brain electrical activity was recorded from a limited montage located on the forehead of 394 closed head injured patients who were referred for CT scans as part of their standard ED assessment. A total of 116 of these patients were found to be CT positive (CT+), of which 46 patients with traumatic intracranial hematomas (CT+) were identified for study. A total of 278 patients were found to be CT negative (CT−) and were used as controls. CT scans were subjected to quanitative measurements of volume of blood and distance of bleed from recording electrodes by blinded independent experts, implementing a validated method for hematoma measurement. Using an algorithm based on brain electrical activity developed on a large independent cohort of TBI patients and controls (TBI-Index), patients were classified as either positive or negative for structural brain injury. Sensitivity to hematomas was found to be 95.7% (95% CI=85.2, 99.5), specificity was 43.9% (95% CI=38.0, 49.9). There was no significant relationship between the TBI-Index and distance of the bleed from recording sites (F=0.044, p=0.833), or volume of blood measured F=0.179, p=0.674). Results of this study are a validation and extension of previously published retrospective findings in an independent population, and provide evidence that a TBI-Index for structural brain injury is a highly sensitive measure for the detection of potentially life-threatening traumatic intracranial hematomas, and could contribute to the rapid, quantitative evaluation and treatment of such patients

    Photoresponse of PbS nanoparticles-quaterthiophene films prepared by gaseous deposition as probed by XPS

    Get PDF
    Cataloged from PDF version of article.Semiconducting lead sulfide (PbS) nanoparticles were cluster beam deposited into evaporated quaterthiophene (4T) organic films, which in some cases were additionally modified by simultaneous 50 eV acetylene ion bombardment. Surface chemistry of these nanocomposite films was first examined using standard x-ray photoelectron spectroscopy (XPS). XPS was also used to probe photoinduced shifts in peak binding energies upon illumination with a continuous wave green laser and the magnitudes of these peak shifts were interpreted as changes in relative photoconductivity. The four types of films examined all displayed photoconductivity: 4T only, 4T with acetylene ions, 4T with PbS nanoparticles, and 4T with both PbS nanoparticles and acetylene ions. Furthermore, the ion-modified films displayed higher photoconductivity, which was consistent with enhanced bonding within the 4T organic matrix and between 4T and PbS nanoparticles. PbS nanoparticles displayed higher photoconductivity than the 4T component, regardless of ion modification. (C) 2012 American Vacuum Society

    Carotid atherosclerosis and a reduced likelihood for lowered cognitive Performance in a Canadian first nations population

    Get PDF
    Background: We investigated the associations among cardiovascular risk factors, carotid atherosclerosis and cognitive function in a Canadian First Nations population. Methods: Individuals aged ≥18 years, without stroke, nonpreg- nant and with First Nations status were assessed by the Trail Making Test Parts A and B. Results were combined into a Trail Making Test executive function score (TMT-exec). Doppler ultrasonography assessed carotid stenosis and plaque volume. Anthropometric, vascular and metabolic risk factors were assessed by interview, clinical examinations and blood tests. Results: For 190 individuals with TMT-exec scores, the median age of the population was 39 years. Compared to the reference group, individuals with elevated levels of left carotid stenosis (LCS) and total carotid stenosis (TCS) were less likely to demonstrate lowered cognitive performance [LCS, odds ratio (OR): 0.47, 95% confidence interval (CI): 0.24-0.96; TCS, OR: 0.40, 95% CI: 0.20-0.80]. No effect was shown for plaque volume. In structural equation modeling, we found that for every 1-unit change in the anthropometric factor in kg/m2, there was a 0.86-fold decrease in the percent of TCS (p \u3c 0.05). Conclusions: Individuals with elevated levels of LCS and TCS were less likely to demonstrate lowered performance. There was some suggestion that TCS mediates the effect of anthropometric risk factors on cognitive function. Copyright © 2009 S. Karger AG, Basel

    Cognitive demands of face monitoring: Evidence for visuospatial overload

    Get PDF
    Young children perform difficult communication tasks better face to face than when they cannot see one another (e.g., Doherty-Sneddon & Kent, 1996). However, in recent studies, it was found that children aged 6 and 10 years, describing abstract shapes, showed evidence of face-to-face interference rather than facilitation. For some communication tasks, access to visual signals (such as facial expression and eye gaze) may hinder rather than help children’s communication. In new research we have pursued this interference effect. Five studies are described with adults and 10- and 6-year-old participants. It was found that looking at a face interfered with children’s abilities to listen to descriptions of abstract shapes. Children also performed visuospatial memory tasks worse when they looked at someone’s face prior to responding than when they looked at a visuospatial pattern or at the floor. It was concluded that performance on certain tasks was hindered by monitoring another person’s face. It is suggested that processing of visual communication signals shares certain processing resources with the processing of other visuospatial information
    • …
    corecore