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ABSTRACT: Fluctuation scaling reports on all processes producing a data set. Some
fluctuation scaling relationships, such as the Horwitz curve, follow exponential
dispersion models which have useful properties. The mean-variance method applied
to Poisson distributed data is a special case of these properties allowing the gain of a
system to be measured. Here, a general method is described for investigating gain
(G), dispersion (β), and process (α) in any system whose fluctuation scaling follows a
simple exponential dispersion model, a segmented exponential dispersion model, or
complex scaling following such a model locally. When gain and dispersion cannot be
obtained directly, relative parameters, GR and βR, may be used. The method was
demonstrated on data sets conforming to simple, segmented, and complex scaling.
These included mass, fluorescence intensity, and absorbance measurements and
specifications for classes of calibration weights. Changes in gain, dispersion, and
process were observed in the scaling of these data sets in response to instrument parameters, photon fluxes, mathematical
processing, and calibration weight class. The process parameter which limits the type of statistical process that can be invoked to
explain a data set typically exhibited 0 < α < 1, with α > 4 possible. With two exceptions, calibration weight class definitions only
affected β. Adjusting photomultiplier voltage while measuring fluorescence intensity changed all three parameters (0 < α < 0.8; 0
< βR < 3; 0 < GR < 4.1). The method provides a framework for calibrating and interpreting uncertainty in chemical measurement
allowing robust comparison of specific instruments, conditions, and methods.

In his classic review of over 150 interlaboratory comparisons
published in 1982,1 Horwitz noted the coefficient of variation

scaled inversely with sample concentration, C, and this scaling
appeared to be limited by an empirical relationship producing a
trumpet shaped curve. By 1997, the Horwitz curve was verified in
nearly 10000 studies2 and considered among the most intriguing
relationships in Analytical Chemistry.3 These classic studies1,4

provide a view of the fluctuation scaling of interlaboratory
comparisons. They also represent one of the greatest challenges
to our understanding of uncertainty in chemical measurement
and the overall effects of computational, procedural, and
methodological practice in the field as a whole. The ubiquity of
this trend led to the Horwitz ratio (HorRat) as a criterion for
evaluating interlaboratory studies.4−8

The heteroscedasticity, nonconstant variance of standard
deviation across an interval, made clear by the Horwitz function
in interlaboratory comparisons has not been widely appreciated
nor has the lesson of this curve been applied to chemical
measurements at lower levels of aggregation. Chemical measure-
ments are widely assumed to be normally distributed. This
assumption underpins the application of t tests,9 Q-tests,10

Grubb’s test,11 and a range of other statistically based procedures
for presenting and evaluating chemical data. Where a normal
distribution is not explicitly required, our understanding is often
framed in terms of a normal distribution (for example, detection
limits).12,13 Procedures used in statistical quality management14

have particular meanings when data are assumed to follow a
normal distribution which may not be correct when the data
follow other distributions. The heteroscedasticity inherently

diagnosed by fluctuation scaling makes clearer when these
assumptions are applicable.
When a single set of measurements gives reasonable

correspondence to a normal distribution, it is easy to believe
the process producing it is also Gaussian (e.g., error is
independent of scale). This expectation is rarely tested. However,
a simple plot of mean and standard deviation can quickly test this
assumption and related plots have found wide utility in many
areas of science. Urban traffic,15 stock market trades,16 crime,17

measles cases,18 wind energy,19 and deviation of prime numbers
from Riemann’s counting formula20 have all been shown to have
deviations that scale with signal. In physics, scaling of standard
deviation with the mean is referred to as fluctuation scaling. In
biology, the relationship between mean and variance has become
known as Taylor’s law. Chemistry has not unified its terminology
and, depending on the study, fluctuation scaling behavior might
be referred to as Horwitz behavior,6,7 characteristic functions,7

uncertainty functions,21 or not directly named.22

Concerns have been raised about the Horwitz curve. There has
never been a satisfactory explanation for the relationship and its
form suggests that as C → 0 so does the standard deviation.7 A
variety of alternative uncertainty functions have been proposed
(c.f., Thompson’s review21); however, the bulk of these impose a
mixed Gaussian-Gamma model (see below for details), with
Gaussian behavior at low signal and Gamma behavior at high
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signal. Thompson presented two alternatives to the Horwitz
function including a segmented model composed of Gamma,
Horwitz, and Poisson segments23 and a mixed Gaussian-Gamma
model.7 These studies seek to explain an extremely high level of
abstraction: aggregation across multiple interlaboratory studies
at multiple concentrations using multiple methods and assessing
multiple analytes. That level of abstraction begins with
fundamental studies of units and measures, proceeds through
basic measurements like mass, volume, and intensity in individual
laboratories to be aggregated into results based on complex
multistep procedures, and so forth until it reaches the
Thompson-Horwitz level. Each level of abstraction can be
assessed using fluctuation scaling methods.
This paper describes a generalized method that places these

behaviors (e.g.: Horwitz, characteristic and uncertainty func-
tions, etc.) in additional statistical context, applies exponential
dispersion model (power law) scaling to measurements made in
a single laboratory, introduces the concepts of defined scaling,
measured scaling, derived scaling, generalized relative gain, GR,
and relative dispersion, βR, compares presentations of fluctuation
scaling using a set of methods central to chemical measurement
(mass, emission intensity, and absorbance), and illustrates the
effects of fluctuation scaling on derived results.
Theory. The classic Horwitz curve can be presented in terms

of percent relative standard deviation (PRSD) or as a power law
of the standard deviation:24

= = ̅
−C s xPRSD 2 or 0.020.15 0.85 (1)

A plot of the PRSD form produces the classic trumpet shaped
Horwitz curve. Derivations based on the binomial distribution,
Zipf’s law,3 and a heuristic approach2 have been attempted;
however, there is no general understanding of how it arises.
TheHorwitz curve belongs to a family of power law fluctuation

scaling relationships of the form

σ β= ̅
αx (2)

where x ̅ is the mean, σ is the standard deviation, and α and β are
constants. This can be recast in terms of the PRSD to give
Horwitz’s presentation of the same fluctuation scaling relation-
ship, PRSD = 100σ/x ̅ = 100βx ̅

(α−1).
Particular statistical distributions produce specific fluctuation

scaling behavior. The Tweedie family of distributions are
exponential dispersion models following the form of eq 2,
which exist for values of α≤ 0 and≥0.5.25,26 This family includes
the Gaussian distribution (α = 0), the Poisson distribution (α =
0.5), the Gamma distribution (α = 1), and the compound
Poisson-Gamma distribution (0.5 < α < 1).25,27 Classic Horwitz
behavior (α = 0.85) strongly suggests a Poisson-Gamma process
(Figure 1). This might arise from a Poisson distributed number
of laboratories sampling a Gamma distributed process. This
provides statistical context for the coefficients of the Horwitz
fluctuation scaling relationship, similar interlaboratory compar-
isons28 and for fluctuation scaling of the form of eq 2. This could
include measurements made at any level of abstraction:
interlaboratory, interanalyst, and intralaboratory comparisons;
basic measurements of mass, volume, and intensity; and direct
measurements, derived measurements based on several param-
eters, and single- and multistep procedures. The literature of the
fields of mathematics, physics, ecology, and statistics contain a
wealth of information on processes leading to eq 2, which may be
drawn on to assist interpretation.6,16,25,29−31 Although scaling
according to eq 2 is widely observed, more complex (e.g.,
segmented linear response after log transformation) scaling has

been observed in measles cases,18 crime,17 and analytical
chemistry.22 In analytical chemistry, alternatives to the Horwitz

function of the form σ β= + ̅a x( )2 2 have found utility.21 In
the current context, models of this type suggest a mixed
Gaussian-Gamma model, with the Gaussian behavior dominat-
ing at low signal.
Fluctuation scaling of the form of eq 2 allows the gain or

relative gain of a set of measurements to be defined. For the
special case of Poisson distributed data (β = 1 and α = 0.5), the
mean-variance technique to measure the gain of charge coupled
devices is well-known.32,33 The approach is extended here to all
fluctuation scaling processes following eq 2. If a process
generates signals and gain, G, is applied such that the observed
mean is M̅ = Gx ̅ and the observed standard deviation is s = Gσ,
then substitution into eq 2 gives

β= ̅α α−s G M(1 ) (3)

This expression provides a route to assess G, α, and β. If either G
or β are known from other measurements, theory, or extensive
experience, they may be interpreted directly.
When β is unknown but the processes are believed to be

similar, a generalized relative gain may be invoked.17 For
example, two sets of measurements made under different
conditions (e.g., in different laboratories or using different
instrument parameters) could exhibit two pre-exponential
factors in their respective fluctuation scaling plots, such as

β β= ̅ = ̅α α α α− −s G M s G Mand1
(1 )

1 2
(1 )

2
1 1 2 2 (4)

where the subscripts refer to the first and second set of
measurements. If β1 = β2 and α1 = α2, these will cancel from a
ratio, R, of measured pre-exponential factors.
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Rearranging yields the generalized relative gain, GR.

= = α−G
G
G

RR
1

2

1/(1 )

(6)

GR is a measure of amplification that occurs without changing the
dispersion of the distribution from which it arises. Alternatively,
whenG1 andG2 are known or when the ratioG1/G2 is known this
allows a relative dispersion parameter, βR, to be defined.

Figure 1. Power Law presentation of fluctuation scaling relationships for
Gaussian (α = 0, ■), Poisson (α = 0.5, ▲), Horwitz (α = 0.85, ⧫), and
Gamma (α = 1, ●) processes, with shading highlighting the Poisson-
Gamma region. For presentation, the pre-exponential factors have been
kept constant.
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(7)

βR is a measure of the extent that a change in a process stretches
the width of the statistical distribution independent of any
amplification. The parameters α, GR, and βR are related to the
HorRat,4−8 but provide additional details. The HorRat is the
observed PRSD divided by the expectation from eq 1 (PRSD
version). If the expected values are α = 0.85, GR = 1, and βR = 1
for a process producing an observed PRSD, there is equivalence,
and the HorRat defines the distance from the scaling law. When
generalizing to fluctuation scaling following eq 2, the HorRat is
insufficient. Specifically, it is possible for two fundamentally
different scaling laws to intersect and produce HorRat = 1 at a
particular point. It is possible that fundamentally different
processes (α’s not equal) are involved and it is also possible for
GR and βR to scale such that there is no net change in HorRat.
The considerations represented by eqs 3−7 can also be used to

understand segmented scaling such as that of the form

σ β= + ̅a x( )2 2 provided the data conform to eq 2 over
identifiable segments. In more complex cases where segmented
scaling is not observed (e.g., absorbance), the derivative of log−
log transformed uncertainty functions gives local estimates of α.
In addition to the generalized gain and dispersion parameters,

three definitions are provided to describe types of scaling
behavior. Defined fluctuation scaling is where allowable
tolerances are defined by ASTM, IUPAC, and related agencies
for classes of things such as calibration weights. These definitions
may sometimes limit the comparability of results across
laboratories using these items. Measured fluctuation scaling is
the behavior obtained by measuring objects or materials over a
wide range of values as reported directly by an instrument.
Derived fluctuation scaling is scaling after computations are
applied to measured results. This could be application of a
calibration curve to the data, mathematical manipulation,
filtering, and so on.

■ EXPERIMENTAL SECTION

The tolerances of calibration weights were obtained from
published tables (OIML R 111−2). Mass measurements were
made (n = 10) on a Sartorius Extend ED244S balance.
Fluorescence measurements (n = 10) were made with a Cary
Eclipse Fluorimeter. Absorbance measurements (n = 10) were
made with an Agilent 8454 Diode Array Spectrophotometer. An
ND4 filter (Nikon) was introduced to reduce the amount of light
present for some of the absorbance measurements. Rhodamine
6G (Sigma-Aldrich) was used as both an absorber and

fluorophore. Solutions were prepared by dissolving the rhod-
amine 6G in a small amount of methanol and diluting with water.
Fitting of scaling relationships was done using log transformed

data and parameters were estimated by standard regression
methods in MS Excel with two exceptions. Tests of the
equivalence of α parameters at different PMT voltage settings
were done using a regression model with categorical variables
(Minitab 17). The rainbow test was applied to the emission
intensity data series to assess mis-specification in a straight line
model using R (Version 3.3.1) with the lmtest package (version
0.9−34). The piecewise fit to the fluorescence intensity data was
done using R with the SiZeR package (Version 0.1−4) providing
an estimate of the change point, slope, and intercept parameters
with bootstrap confidence intervals.

■ RESULTS AND DISCUSSION

Mass.Defined Scaling.Two commonly applied standards for
calibration weights are ASTM E617 and OIML R 111−2, which
specify tolerances for varying classes of weights. These standards
exhibit segmented power law scaling. Considering the
recommendations in OIML R 111−2 for calibration weights of
type E1, E2, F1, F2, M1, M2, and M3, three regimes are observed
(Figure 2). At low mass, the behavior is Gaussian with α = 0. In
the intermediate mass range, the scaling exhibited α = 0.3, which
is between that expected from Gaussian and Poisson
distributions. For the largest masses (50−20000 g), α = 0.98,
closely matching the expectation from a Gamma distribution.
Using these weights creates a complex segmented scaling model
by definition. ASTM guidelines gives similar results except the
regimes are not as clearly delineated.

Relative βR. The segmented scaling in the defined character-
istics is noteworthy because, with the exception of two E1 class
weights, changing the class of calibration weight does not change
the scaling exponent. This indicates that weights having the same
mass are created by a similar statistical process (α) with different
pre-exponential factors. Since the masses have not changed, no
gain has been introduced (GR = 1), indicating the assumptions
allowing βR to be calculated apply (eq 7). The intermediate and
high mass sets exhibit identical βR (Table 1) with some variation
in the lowest masses. These βR factors define the increase in
uncertainty for the same mass (e.g., the M1 weight set represents
a process with 67−100 times the variation of that producing the
E1 weight set). Changing weight type only changes the dispersion
and has no impact on the defining process.

Measured Scaling. A set of calibration weights and laboratory
materials covering a mass range from ∼15 mg up to 200 g were
repeatedly measured to determine the scaling behavior of an
analytical balance (Figure 3, filled circles). The power law for the

Figure 2.Comparison of PRSD (left panel) and power law scaling (right panel) of OIML definedmaximum permissible errors (MPE) in weights of type
E1 (Δ), E2 (○), F1 (□), F2 (⧫), M1 (▲), M2 (●), and M3 (■) weights. PRSD was taken to be 100 × MPE/mass.
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PRSD curve was PRSD = 0.018x ̅
−0.83 and for s was s =

0.00018x ̅
0.17 conforming to expectation from the two presenta-

tions (e.g., (α− 1) and 100× β for PRSD vs α and β for standard
deviation). With this confirmation, only representations
following eq 2 will be discussed subsequently. These data
indicate that the analytical balance data were not produced by a
device with error independent of signal as expected for a
Gaussian process.
Derived Scaling. In the case of mass, a simple derived quantity

might be a mass of analyte (x) per mass of sample (y). If samples
consist of 200 g and the analyte can be anywhere from 15 mg up
to 200 g, application of a division operation to data in Figure 3
yields modified scaling behavior (Figure 3, open squares). The
division operation resulted in both the exponent and pre-
exponential changing to s = 2.4 × 10−6x ̅

0.19. Although the bulk of
the change is in the pre-exponential factor, both parameters were
affected by the operation.
Fluorescence. Measurement of fluorescence emission inten-

sity is directly related to the number of photons collected. As
such, the fluctuations would be expected to be limited by a
Poisson scaling law. To investigate the fluctuation scaling of a
typical fluorescence measurement, replicate spectra of a
rhodamine 6G dilution series were measured using a single
photomultiplier voltage (600 V) over a wide range of
concentrations and the entire data set replotted in the form of
eq 2 (Figure 4). The data were inconsistent with a single line

model by the rainbow test (p < 2.2e−16), leaving two fluctuation
scaling regimes corresponding to low intensity and high
intensity, with a break at 1.41 arbitrary intensity units (95% CI
0.92−1.74). The low intensity side approximates Gaussian
scaling and might be considered the noise floor of the detection
system, except that α ≠ 0 (s = 0.0674x ̅

0.124). The high intensity
portion approximated but was not quite Poisson scaling (s =
0.0582x ̅

0.554) with 0.5 outside the 95% confidence interval of the
exponent.

Gain, βR, and PMT Voltage. The amplification of a
fluorescence signal in an instrument of the type used in this
study may be adjusted using the voltage applied to a
photomultiplier tube (PMT). A simple way to measure this is
to record the emission spectrum of a single fluorescent solution
while varying the PMT voltage. The variation in the intensities
measured across a spectrum provides the data required for
fluctuation scaling plots. A comparison of the scaling at PMT
voltage settings of 400, 600, and 700 V indicated that adjustment
of the PMT fundamentally changed the statistical behavior of the
system (Figure 5). Although there is evidence that a linear model
represents a mis-specification (see Supporting Information for
details), the scaling behavior can be approximated by a function
of the form of eq 2. Specifically, at the low setting, the exponent
(α = 0.06) was near that expected for a Gaussian process. At the
higher PMT settings, a single exponent was found (α = 0.59).
Using the ratio of the measured spectra at 600 and 700 V gaveGR

Table 1. Comparison of Scaling Parameters across theWeight
Sets Defined by OIML R 111-2a

wt set regime G(1−α)β α R βR

M1 gaussian 2.00 × 10−4 0 67 67
F2 gaussian 6.00 × 10−5 0 20 20
F1 gaussian 2.00 × 10−5 0 6.7 6.7
E2 gaussian 6.00 × 10−6 0 2.0 2
E1 gaussian 3.00 × 10−6 0 1.0 1
M1 intermediate 9.83 × 10−4 0.3 100 100
F2 intermediate 3.12 × 10−4 0.3 31.7 31.7
F1 intermediate 9.83 × 10−5 0.3 10 10
E2 intermediate 3.12 × 10−5 0.3 3.2 3.2
E1 intermediate 9.83 × 10−6 0.3 1.0 1.0
M1 approx. Γ 5.69 × 10−5 0.98 100 100
F2 approx. Γ 1.88 × 10−5 0.98 33.0 33.0
F1 approx. Γ 5.69 × 10−6 0.98 10.0 10.0
E2 approx. Γ 1.88 × 10−6 0.98 3.3 3.3
E1 approx. Γ 5.69 × 10−7 0.98 1.0 1.0

aR and βR parameters have been computed relative to the E1 weight.

Figure 3. Comparison of PRSD (circles) and power law scaling
(squares) presentation of raw mass data (filled symbols) and derived
composition (open symbols).

Figure 4. Comparison of PRSD (circles) and power law (squares)
scaling of fluorescence intensity. Two regimes are seen delineated by the
vertical line. The low signal range (black symbols) approximated, but
was not consistent with Gaussian scaling. The higher range (blue
symbols) approximated but was also inconsistent with Poisson scaling.

Figure 5. Effect of PMT voltage on the scaling behavior of a single
fluorescent sample. The PRSD presentation is indicated with circles and
scaling of standard deviation with squares. The small filled markers
correspond to 400 V, the large filled markers were measured at 600 V,
and the large open markers were taken at 700 V. A fundamental change
in the statistics takes place between 400 and 600 V, as seen in the nearly
flat scaling at 400 V and consistent slope at 600 and 700 V.
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= 4.06, allowing βR to be found (βR = 0.88). These considerations
indicate that when going from 600 to 700 V, the width of the
distribution compressed slightly. Changing the PMT voltage
increased the gain by a factor of 4 while improving the dispersion.
Based on these considerations, provided the instrument does not
reach saturation, it would be better to measure at 700 V.
In this context, it is worth considering the meaning of a

generalized HorRat for a fluorescence intensity measurement. If
a community decides that accepted scaling behavior is given by
the 700 V data, an ill-judged sample used in a comparison set
might appear at the intersection of the 400 and 700 V data sets.
This will not diagnose the very different results produced by
setting the PMT to 400 V and the HorRat would be one at the
intersection. Similarly, the interplay between gain and dispersion
cannot be appreciated by a simplistic ratio of scaling laws.
Transmittance and Absorbance. Defined Scaling.

Although standards are available for calibrating the photometric
accuracy of spectrophotometers, standards organizations do not
appear to have defined classes of absorbing standards similar to
those available for calibration of balances. IUPAC34 provides
guidance for best precision (PRSD) depending on whether the
measurement is limited by detector noise or photon noise. It
gives no guidance on spectrophotometer quality (e.g., the
measurement can be made more precise by collecting more
photons) or how to evaluate which type of noise (or a hybrid)
dominates. As such, it is largely outdated in this regard. However,
uncertainty functions21 for transmittance and absorbance
measurements are easily derived from error propagation rules
for division and log transformations. The uncertainty functions
for transmittance and absorbance are
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= +
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If the photons are Poisson distributed and this is measured in the
presence of Gaussian detector noise, sd, sI may be replaced by
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With sd = 0, the simulated behavior (eq 8) of transmittance
(Figure 6, top left panel) shows good correspondence to eq 2
with a pre-exponential dependent on the number of photons
collected in I0. The exponent, α = 0.466, approximates that
expected from a Poisson limited process (e.g., α = 0.5) modified
by a division operation. As the number of photons increases, no
change in transmittance occurred indicating GR = 1. Hence,
dispersion changes such that a factor of 10 change in intensity
gives βR = 3.16.
Transformation of transmittance by the log function (Figure 6,

top right panel) has the effect of making absorbance nearly
Gaussian when the measured absorbance remains below 0.5
absorbance units. In this range, the exponent can be considered

Figure 6. Comparison of simulated PRSD (dashed lines) and power law scaling (solid lines) of transmittance (left panels) and absorbance (right
panels). In the upper panels the number of photons in I0 varied with the narrowest line corresponding to I0 = 100 with each increase in line width
representing a factor of 10 increase in I0. The scaling behavior of transmittance is close to that expected from Poisson statistics while absorbance is more
complex but approximates Gaussian scaling below 0.5 (indicated with the vertical line). Above this as I goes to zero, its relative error begins to dominate
creating the hockey stick shape. In the lower panels, α is set to 1.0 (widest lines), 0.8, 0.6, and 0.4 (narrowest lines) while holding G = 1 and β = 0.5.
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nearly constant and near zero (α = 0.027) and the standard
deviation depends on I0. Similar to transmittance, absorbance
exhibits βR = 3.16 for a factor of 10 change in I0. Above 0.5, the
scaling behavior curves upward and deviates from the behavior
expected from eq 2. This is due to the relative variance of the I
term in eq 8 growing rapidly as I → 0. Consideration of the
derivative gives α values well in excess of 1 at high absorbance.
The PRSD function reaches a minimum near 0.86 for this
detector noise free case reinforcing IUPAC guidance, while
making clear the number of photonsmust be specified for general
good practice.
Alternatively, based on the data in Figure 5, sI may have power

law scaling of the form of eq 3. Substitution of the power law
scaled uncertainty functions for intensity yields

β β
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Terms can be added to eq 10 to account for additional sources of
variation such as readout error, “flicker”, positioning, and so
on,35,36
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The utility of eqs 10 and 11 is to consider uncertainty functions
based on non-Poisson processes (Figure 6, bottom panels). As α
approaches 1 in eq 10, absorbance scaling approaches eq 2 and
the position of the minimum PRSD depends on the value of α.
When α = 1, no minimum is seen. The photomultiplier tube data
(Figures 4 and 5) exhibited α from 0 up to 0.76 (see Supporting
Information for additional details) and a range of GR and βR
values. Eqs 10 and 11 provide context for these values and can
also be used to consider the effects of number squeezed light37 on
this type of measurement.
Measured Scaling. To assess measured scaling in absorbance

measurements, a single solution was measured in the presence
and absence of a ND4 filter to reduce the amount of light
reaching the diode array (Figure 7, black symbols). Although

qualitatively the data follow the complex scaling trends of Figure
6, there is a marked additional upward curvature at high
absorbance attributable to detector noise. Fits to eq 9 gave
estimates of I0 (7.1 × 107 photons) and sd (equivalent to 3700
photons) and consideration of the derivative found α reaching
values in excess of 4 above absorbance values of 2. Transmittance
and absorbance values were also generated from the intensities in
Figure 4 (Figure 7, blue symbols). In these results, the effects of
the complex segmented fluctuation scaling of the photo-
multiplier tube are clearly seen. The minimum of this system is
found near 1.5 absorbance units, well outside the range 0.43−
0.86 typically assumed.
While the general shape of absorbance PRSD curves has been

known for some time, detailed studies on modern instrumenta-
tion are limited and the effects of light sources with non-Poisson
scaling have not been extensively modeled. Constructing
fluctuation scaling plots provides a simple way to compare
spectrophotometers and to specify methods depending on them.
To a trained eye, Figure 7 (right panel) reveals the number of
photons used, the flatness of the light source across the
wavelengths assessed, where the best measurements can be
made, and information about the dominant noise sources.

■ CONCLUSION

This study used fluctuation scaling to calibrate the uncertainty
and interpret the gain, dispersion, and process parameters
obtained from a set of measurement techniques which underpin
nearly all of analytical chemistry. The reported calibrations reflect
the specific conditions at the time of measurement and make a
number of things clear. (1) Horwitz scaling parameters may be
characteristic of interlaboratory comparisons but do not apply to
any of the underpinning measurements considered here. (2)
Simple or segmented power law scaling (eq 2) was observed in
nearly all cases and showed how acquisition parameters and
computations affect the dispersion and gain of measurements.
(3) When more complex scaling is observed (e.g., absorbance)
fitting the fluctuation scaling to uncertainty functions provides a
rigorous way to compare the performance of instruments and
methods. (4) There is no justification for a HorRat approach to
the measurements presented here and application of the HorRat
may be misleading in the absence of a full fluctuation scaling
study in each lab of an interlaboratory comparison. The issues
highlighted here suggest that current applications of this metric
need to be reviewed. (5) This study and previous work make
clear that chemically relevant measurements typically exhibit
exponents over the range 0 ≤ α ≤ 1 (Gaussian to Gamma). Any

Figure 7. Comparison of PRSD (circles) and power law scaling (squares) of transmittance (left panel) and absorbance (right panel) as I0 was adjusted
(black symbols) with derived scaling from a non-Poisson system (blue symbols). Replicate measurements of a rhodamine 6G solution were made with
(open black symbols) and without (filled black symbols) a neutral density (ND4) filter. The minima for the absorbance PRSD were found at 0.59 (with
ND4) and 0.67 (without ND4) for the diode array data and ∼1.5 for the non-Poisson system.
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value in this range is valid and reflects the process underlying the
measurement. In some cases, like sections of an absorbance
curve, α > 1 is also possible.
The data presented here was intralaboratory but provides a

number of insights that may assist analysts, instrumentation
providers, and participants in interlaboratory comparisons.
Specifically, analysts, professional bodies, and instrumentation
providers have broad understanding of the concept of detection
limits. There is limited appreciation of fluctuation scaling and the
concepts of gain, dispersion, and process. Detection limits have a
statistical basis, however, a detection limit is of limited value
compared to a fluctuation scaling investigation. The former
provides information about a regime best avoided for routine
analysis. The latter provides a clear picture of the expected
statistics of an instrument or method over its full range of
operation. As an extreme example, two instruments could have
the same very low detection limit. If one of them followed gamma
scaling, its PRSD would never change over its entire dynamic
range. Such an instrument would be vastly inferior to another
having Poisson or Gaussian scaling and arguably would never
reach a quantification limit. Further, because fluctuation scaling
behavior is not well appreciated, it is possible for manufacturers
to provide error estimates in their software that are unrealistic.
Manufacturers should be encouraged to report and specify the
scaling behavior of their products and services.
Fluctuation scaling gives a compact presentation of instrument

and measurement behavior allowing comparisons between
instrument settings, analysts, manufacturers, providers of
analytical services, and laboratories. For example, consider an
analyst, instrument, or laboratory returning a result deemed an
outlier. Making a decision based on a single point is not as
valuable as the overall scaling behavior. Scaling can determine if
that outlier arises from a different process (αobserved ≠ αexpectation),
one that is differently dispersed (βobserved ≠ βexpectation), and one
exhibiting unexplained gain (GR≠ 1). The additional insight this
provides the analytical community should fundamentally change
the way we view our instrumentation, methods, and uncertainty
estimates.
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