28 research outputs found
Glucocorticoids, master modulators of the thymic catecholaminergic system?
There is evidence that the major mediators of stress, i.e., catecholamines and glucocorticoids, play an important role in modulating thymopoiesis and consequently immune responses. Furthermore, there are data suggesting that glucocorticoids influence catecholamine action. Therefore, to assess the putative relevance of glucocorticoid-catecholamine interplay in the modulation of thymopoiesis we analyzed thymocyte differentiation/maturation in non-adrenalectomized and andrenalectomized rats subjected to treatment with propranolol (0.4 mg.100 g body weight(-1).day(-1)) for 4 days. The effects of beta-adrenoceptor blockade on thymopoiesis in non-adrenalectomized rats differed not only quantitatively but also qualitatively from those in adrenalectomized rats. In adrenalectomized rats, besides a more efficient thymopoiesis [judged by a more pronounced increase in the relative proportion of the most mature single-positive TCR alpha beta(high) thymocytes as revealed by two-way ANOVA; for CD4(+)CD8(-)F (1,20) = 10.92, P lt 0.01; for CD4(-)CD8(+)F (1,20) = 7.47, P lt 0.05], a skewed thymocyte maturation towards the CD4(-)CD8(+) phenotype, and consequently a diminished CD4(+)CD8(-)/CD4(-)CD8(+) mature TCR alpha beta(high) thymocyte ratio (3.41 +/- 0.21 in non-adrenalectomized rats vs 2.90 +/- 0.31 in adrenalectomized rats, P lt 0.05) were found. Therefore, we assumed that catecholaminergic modulation of thymopoiesis exhibits a substantial degree of glucocorticoid-dependent plasticity. Given that glucocorticoids, apart from catecholamine synthesis, influence adrenoceptor expression, we also hypothesized that the lack of adrenal glucocorticoids affected not only beta-adrenoceptor- but also alpha-adrenoceptor-mediated modulation of thymopoiesis
Impairment of Rat Fetal Beta-Cell Development by Maternal Exposure to Dexamethasone during Different Time-Windows
Glucocorticoids (GCs) take part in the direct control of cell lineage during the late phase of pancreas development when endocrine and exocrine cell differentiation occurs. However, other tissues such as the vasculature exert a critical role before that phase. This study aims to investigate the consequences of overexposure to exogenous glucocorticoids during different time-windows of gestation for the development of the fetal endocrine pancreas
Comparative Proteomic Analysis of Serum from Patients with Systemic Sclerosis and Sclerodermatous GVHD. Evidence of Defective Function of Factor H
BACKGROUND: Systemic sclerosis (SSc) is an autoimmune disease characterized by immunological and vascular abnormalities. Until now, the cause of SSc remains unclear. Sclerodermatous graft-versus-host disease (ScGVHD) is one of the most severe complications following bone marrow transplantation (BMT) for haematological disorders. Since the first cases, the similarity of ScGVHD to SSc has been reported. However, both diseases could have different etiopathogeneses. The objective of this study was to identify new serum biomarkers involved in SSc and ScGVHD. METHODOLOGY: Serum was obtained from patients with SSc and ScGVHD, patients without ScGVHD who received BMT for haematological disorders and healthy controls. Bi-dimensional electrophoresis (2D) was carried out to generate maps of serum proteins from patients and controls. The 2D maps underwent image analysis and differently expressed proteins were identified. Immuno-blot analysis and ELISA assay were used to validate the proteomic data. Hemolytic assay with sheep erythrocytes was performed to evaluate the capacity of Factor H (FH) to control complement activation on the cellular surface. FH binding to endothelial cells (ECs) was also analysed in order to assess possible dysfunctions of this protein. PRINCIPAL FINDINGS: Fourteen differentially expressed proteins were identified. We detected pneumococcal antibody cross-reacting with double stranded DNA in serum of all bone marrow transplanted patients with ScGVHD. We documented higher levels of FH in serum of SSc and ScGVHD patients compared healthy controls and increased sheep erythrocytes lysis after incubation with serum of diffuse SSc patients. In addition, we observed that FH binding to ECs was reduced when we used serum from these patients. CONCLUSIONS: The comparative proteomic analysis of serum from SSc and ScGVHD patients highlighted proteins involved in either promoting or maintaining an inflammatory state. We also found a defective function of Factor H, possibly associated with ECs damage
Stable High-Level Expression of Heterologous Genes In Vitro and In Vivo by Noncytopathic DNA-Based Kunjin Virus Replicon Vectors
Primary features of the flavivirus Kunjin (KUN) subgenomic replicons include continuous noncytopathic replication in host cell cytoplasm and the ability to be encapsidated into secreted virus-like particles (VLPs). Previously we reported preparation of RNA-based KUN replicon vectors and expression of heterologous genes (HG) in cell culture after RNA transfection or after infection with recombinant KUN VLPs (A. N. Varnavski and A. A. Khromykh, Virology 255:366–375, 1999). In this study we describe the development of the next generation of KUN replicon vectors, which allow synthesis of replicon RNA in vivo from corresponding plasmid DNAs. These DNA-based vectors were able to direct stable expression of β-galactosidase (β-Gal) in several mammalian cell lines, and expression remained high (∼150 pg per cell) throughout cell passaging. The applicability of these vectors in vivo was demonstrated by β-Gal expression in the mouse lung epithelium for at least 8 weeks after intranasal inoculation and induction of anti-β-Gal antibody response after intramuscular inoculation of the β-Gal-encoding KUN replicon DNA. The noncytopathic nature of DNA-based KUN replicon vectors combined with high-level and stability of HG expression in a broad range of host cells should prove them to be useful in a variety of applications in vitro and in vivo