4,020 research outputs found
Cheng Equation: A Revisit Through Symmetry Analysis
The symmetry analysis of the Cheng Equation is performed. The Cheng Equation
is reduced to a first-order equation of either Abel's Equations, the analytic
solution of which is given in terms of special functions. Moreover, for a
particular symmetry the system is reduced to the Riccati Equation or to the
linear nonhomogeneous equation of Euler type. Henceforth, the general solution
of the Cheng Equation with the use of the Lie theory is discussed, as also the
application of Lie symmetries in a generalized Cheng equation.Comment: 10 pages. Accepted for publication in Quaestiones Mathematicae
journa
Continuous loading of S calcium atoms into an optical dipole trap
We demonstrate an efficient scheme for continuous trap loading based upon
spatially selective optical pumping. We discuss the case of S
calcium atoms in an optical dipole trap (ODT), however, similar strategies
should be applicable to a wide range of atomic species. Our starting point is a
reservoir of moderately cold (K) metastable
P-atoms prepared by means of a magneto-optic trap (triplet-MOT). A
focused 532 nm laser beam produces a strongly elongated optical potential for
S-atoms with up to 350 K well depth. A weak focused laser beam
at 430 nm, carefully superimposed upon the ODT beam, selectively pumps the
P-atoms inside the capture volume to the singlet state, where they
are confined by the ODT. The triplet-MOT perpetually refills the capture volume
with P-atoms thus providing a continuous stream of cold atoms into
the ODT at a rate of s. Limited by evaporation loss, in 200 ms we
typically load atoms with an initial radial temperature of 85
K. After terminating the loading we observe evaporation during 50 ms
leaving us with atoms at radial temperatures close to 40 K and a
peak phase space density of . We point out that a
comparable scheme could be employed to load a dipole trap with
P-atoms.Comment: 4 pages, 4 figure
Formation of a topological non-Fermi liquid in MnSi
Fermi liquid theory provides a remarkably powerful framework for the
description of the conduction electrons in metals and their ordering phenomena,
such as superconductivity, ferromagnetism, and spin- and charge-density-wave
order. A different class of ordering phenomena of great interest concerns spin
configurations that are topologically protected, that is, their topology can be
destroyed only by forcing the average magnetization locally to zero. Examples
of such configurations are hedgehogs (points at which all spins are either
pointing inwards or outwards) or vortices. A central question concerns the
nature of the metallic state in the presence of such topologically distinct
spin textures. Here we report a high-pressure study of the metallic state at
the border of the skyrmion lattice in MnSi, which represents a new form of
magnetic order composed of topologically non-trivial vortices. When long-range
magnetic order is suppressed under pressure, the key characteristic of the
skyrmion lattice - that is, the topological Hall signal due to the emergent
magnetic flux associated with their topological winding - is unaffected in sign
or magnitude and becomes an important characteristic of the metallic state. The
regime of the topological Hall signal in temperature, pressure and magnetic
field coincides thereby with the exceptionally extended regime of a pronounced
non-Fermi-liquid resistivity. The observation of this topological Hall signal
in the regime of the NFL resistivity suggests empirically that spin
correlations with non-trivial topological character may drive a breakdown of
Fermi liquid theory in pure metals
Waveguide-based OPO source of entangled photon pairs
In this paper we present a compact source of narrow-band energy-time
entangled photon pairs in the telecom regime based on a Ti-indiffused
Periodically Poled Lithium Niobate (PPLN) waveguide resonator, i.e. a waveguide
with end-face dielectric multi-layer mirrors. This is a monolithic doubly
resonant Optical Parametric Oscillator (OPO) far below threshold, which
generates photon pairs by Spontaneous Parametric Down Conversion (SPDC) at
around 1560nm with a 117MHz (0.91 pm)- bandwidth. A coherence time of 2.7 ns is
estimated by a time correlation measurement and a high quality of the entangled
states is confirmed by a Bell-type experiment. Since highly coherent
energy-time entangled photon pairs in the telecom regime are suitable for long
distance transmission and manipulation, this source is well suited to the
requirements of quantum communication.Comment: 13 page
LQR based improved discrete PID controller design via optimum selection of weighting matrices using fractional order integral performance index
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.The continuous and discrete time Linear Quadratic Regulator (LQR) theory has been used in this paper for the design of optimal analog and discrete PID controllers respectively. The PID controller gains are formulated as the optimal state-feedback gains, corresponding to the standard quadratic cost function involving the state variables and the controller effort. A real coded Genetic Algorithm (GA) has been used next to optimally find out the weighting matrices, associated with the respective optimal state-feedback regulator design while minimizing another time domain integral performance index, comprising of a weighted sum of Integral of Time multiplied Squared Error (ITSE) and the controller effort. The proposed methodology is extended for a new kind of fractional order (FO) integral performance indices. The impact of fractional order (as any arbitrary real order) cost function on the LQR tuned PID control loops is highlighted in the present work, along with the achievable cost of control. Guidelines for the choice of integral order of the performance index are given depending on the characteristics of the process, to be controlled.This work has been supported by the Dept. of Science & Technology (DST), Govt. of India under PURSE programme
A versatile source of polarisation entangled photons for quantum network applications
We report a versatile and practical approach for generating high-quality
polarization entanglement in a fully guided-wave fashion. Our setup relies on a
high-brilliance type-0 waveguide generator producing paired photon at a telecom
wavelength associated with an advanced energy-time to polarisation transcriber.
The latter is capable of creating any pure polarization entangled state, and
allows manipulating single photon bandwidths that can be chosen at will over
five orders of magnitude, ranging from tens of MHz to several THz. We achieve
excellent entanglement fidelities for particular spectral bandwidths, i.e. 25
MHz, 540 MHz and 100 GHz, proving the relevance of our approach. Our scheme
stands as an ideal candidate for a wide range of network applications, ranging
from dense division multiplexing quantum key distribution to heralded optical
quantum memories and repeaters.Comment: 5 figure
Integrated optical source of polarization entangled photons at 1310 nm
We report the realization of a new polarization entangled photon-pair source
based on a titanium-indiffused waveguide integrated on periodically poled
lithium niobate pumped by a CW laser at . The paired photons are
emitted at the telecom wavelength of within a bandwidth of .
The quantum properties of the pairs are measured using a two-photon coalescence
experiment showing a visibility of 85%. The evaluated source brightness, on the
order of pairs , associated with its
compactness and reliability, demonstrates the source's high potential for
long-distance quantum communication.Comment: There is a typing mistake in the previous version in the visibility
equation. This mistake doesn't change the result
- …
