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Abstract:

The continuous and discrete time Linear Quadraggufator (LQR) theory has been
used in this paper for the design of optimal anatogl discrete PID controllers
respectively. The PID controller gains are formedbas the optimal state-feedback gains,
corresponding to the standard quadratic cost fongtivolving the state variables and the
controller effort. A real coded Genetic Algorithi34) has been used next to optimally
find out the weighting matrices, associated with tespective optimal state-feedback
regulator design while minimizing another time daméntegral performance index,
comprising of a weighted sum of Integral of Timeltplied Squared Error (ITSE) and
the controller effort. The proposed methodologgitended for a new kind of fractional
order (FO) integral performance indices. The immddtactional order (as any arbitrary
real order) cost function on the LQR tuned PID oarfbops is highlighted in the present
work, along with the achievable cost of control.id&lines for the choice of integral
order of the performance index are given dependmthe characteristics of the process,
to be controlled.

Keywords: fractional calculus; integral performance indeiydar Quadratic Regulator
(LQR); optimal control; PID controller tuning

1. Introduction

Classical optimal control theory has evolved ovecatles to formulate the well
known Linear Quadratic Regulators which minimizes ¢xcursion in state trajectories of
a system while requiring minimum controller eff¢t{. This typical behaviour of LQR
has motivated control designers to use it for tiveng of PID controllers [2]-[3]. PID
controllers are most common in process industriae tb its simplicity, ease of
implementation and robustness. Using the Lyapunow&thod, the optimal quadratic
regulator design problem reduces to the Algebramrd&i Equation (ARE) which is
solved to calculate the state feedback gains finosen set of weighting matrices. These
weighting matrices regulate the penalties on theatien in the trajectories of the state
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variables &) and control signal (). Indeed, with an arbitrary choice of weighting
matrices, the classical state-feedback optimal latgns seldom show good set-point
tracking performance due to the absence of integmah unlike the PID controllers.

Thus, combining the tuning philosophy of PID coliene with the concept of LQR

allows the designer to enjoy both optimal set-ptiatking and optimal cost of control
within the same design framework.

Optimal control theory has been extended to turi2 dntrollers in few recent
literatures. In Choi and Chung [4], an inverse mjpli PID controller is designed
considering the error and its integro-differentz the state variables, similar to the
approach, presented in this paper. In Arretlal. [5], a custom cost function has been
minimized with GA to design multi-loop PID contreik as the weighted sum of ITSE
and variance of the manipulated variable and ctattosariable. PID controller tuning
with state-space approach using the error andrés dnd second order derivative has
been investigated in [6]-[7]. The method propos€R:=PID of Heet al. [2]-[3] has been
extended for first and second order systems wittboszen the process model in
Ghartemaniet al. [8]. Ochi and Kondo [9] have shown that the in&ddype optimal
servo for second order system can be reduced tQR problem and an optimal I-PD
controller can be designed with this technique.e®avclassical optimal and robust
control approaches of PID controller can be catst anLinear Matrix Inequality (LMI)
problem as in Get al.[10] which consider the controlled variable, i#$er and integral of
error as the state variables.

Genetic algorithm and other stochastic global ogttion techniques have also
been employed for various optimal control probleM#&ng et al. [11] used GA to
optimally find out the weighting matrices of LQR.QandRwith a specified structure.

The concept of GA based optimum selection of wanghinatrices has been extended for
LQR as well as pole placement problems in Pocatedl. [12]. GA based optimal time
domain [13] and frequency domain loop-shaping [daded PID tuning problems are also
popular in the contemporary research community. Thged H/H.. optimal PID
controller tuning of Chert al. [14] has been improved with GA as a single obyecti
disturbance rejection PID controller in KrohlingdaRey [15] and as multi-objective
loop-shaping based design in Léh al. [16]. A wide class of standard optimal control
problems has been solved using evolutionary andrrswiatelligence based global
optimization techniques in Ghoshal.[17], [18].

Fractional order systems and controllers are bengnmcreasingly popular in the
automation and process control community. A statéhe art survey on the design and
application of fractional order system and conéidican be found in [19]. For optimum
set-point tracking control of PID/FOPID controlletsme domain performance index
optimization based tuning techniques are more opand have been applied in Gato
al. [20], Daset al.[21] and Paret al. [22], [23]. The impact of choosing the weighting
matrices of LQR are discussed by Saif [24] in aailed manner. The present
methodology selects the weighting matrices forgbadratic regulator design similar to
that in [11], [12], using Genetic Algorithm whileimmizing a suitable time domain
performance index. Then a new arbitrary (fractiprmaitler integral performance index
has been used as the objective function of GAuagested by Romeret al. [25] for
signal processing applications. The impact of these FO integral indices based PID
design on the closed loop control performance dsasehe corresponding optimality of
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the quadratic regulators are also highlighted ie firesent work. An analog PID
controller and its discretized form a digital P1btlh have been tuned with the proposed
optimum weight selection based corresponding cantis and discrete time LQR
techniques for second order systems with very lod/ fsigh damping as two illustrative
examples.

The rest of the paper is organized as follows. i@ec? discusses about the
theoretical framework for LQR based optimal anadmgl digital PID controller design.
Section 3 proposes the GA based optimum weightsafemethodology for LQR tuning
of PID controllers. Section 4 validates the proplbasyument with two classes of second
order systems as two illustrative examples. Theepapds with the conclusion as section
5, followed by the references.

2. Formulation of LQR Based Optimal PID Controller for Second Order Systems
2.1. Tuning of PID Controllers as Continuous Time Linear Quadratic Regulators

He et al. [2]-[3] has given a formulation for tuning overrdped or critically-
damped second order systems having two real ogngdoocess poles. The concept has
been extended in this sub-section for lightly dathpeocesses as well. Also, in [2], it has
been suggested that one of the real poles neduts cancelled out by placing one of the
controller zeros at the same position on the negagal axis of complex s-plane. Thus
the second order plant to be controlled with a Bdbtroller can be reduced to a first
order process to be controlled by a Pl controliedeed, this approach of Hd al. [2]
does not hold for lightly damped processes havisgllatory open loop dynamics as
such reduction in not possible in this case. Wi approach of optimal PID tuning for
second order processes in [2], also the provisf@inoultaneously and optimally finding
the three parameters of a PID controller (Kg,K;,K,) is lost that has been addressed in

this paper. The present approach assumes the d@sagte and integral as the state
variables and designs the optimal state-feedbaokrater gains as the PID controller
parameters (Fig. 1).

x5

X, (1) u(r) K ()

A4

4 s gol _ ol ol 2
K, sT+28% s+ (')

xX5(1) +

Fig.1. LQR Formulation of PID controller for secoortier processes.

In Fig. 1, a PID controller in parallel form (witproportional, integral and
derivative gains as ,K;,K;) has been considered to control a second ordezraywith

known open loop damping ratio and natural frequeney é°, ' respectively. If the
feedback control system is excited with an extenmalitr (t) to get a control signali(t)
and output/(t),, then let us define the state variables as:
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de(t
x=Jeydt x= ) x=120 ®
From the block diagram presented in Fig. 1, iléacthat
Y(S _ K _-H3 @

U(s) s +28% s+(w§')2 VT
In the case of feedback design, the external set-does not affect the controller
design i.e.r(t) =0. In (2), the relationy(t) = —¢(1) is valid for standard regulator problem

as in Heet al. [2], when the formulation is dependent on thepsatt. Thus, equation (2)
turns out to be

s e2papse(af ) | E9=- KU 3)
= s+28%f e+ (af) e=- Ku (4)
Using (1), equation (4) can be re-written as:

%+ 28%af g + (af ) % = Ku (5)
Using (1) and (5) the state space formulation besom

X, 0 1 0 X 0

X, [=|0 0 1 X [+| 0 |u (6)

).(3 0 _(ajnjl)2 _2‘zolajrzl % -K
Comparing (6) with the standard state-space reptasen i.e.

X(t) = A+ BUY (7)
we get the system matrices as:
0 1 0 0
A=10 0 1 , B=| O (8)
0 _(C’.)r(])l)2 _2{0'0}[?' _K

In order to have a LQR formulation with the systém, the following quadratic cost
function (J) is minimized

3= [ ¥ (0Qx9+ F() R¢Y] d ©)

It has been shown in [26] that minimization of chsiction (9) gives the state feedback
control law as:

u()=-R*'B PX)=- FX} (10)

where, Pis the symmetric positive definite solution of t@entinuous Algebraic Riccati

Equation (CARE) given by (11)

A'P+PA-PBR'B A G0 (11)
Here, the weighting matrixQis symmetric positive semi-definite and the

weighting factorRis a positive number. It is a common practice itirogl control to
design regulators with varyirf@, while keepindRfixed [24] and generally they are

designed with user specified closed loop perforraaspecifications [2]. Here, Solution
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of the CARE (11) th® matrix is generally symmetric and weighting mai@xis chosen
to be a diagonal one whose elements needs to by et designer:

Pll I:?12 P13 Ql 0 O
P=R, B, B, Q=|0 Q O (12)
F?LS P23 P33 o 0 QS

To impose high penalty on a specific state varmlhe elements of the matr@can be

chosen intuitively. Also, weighting factBregulates the penalty on the control signal to
prevent actuator saturation. In most cases, thesghts Q, Rare chosen with designer’s

expertise from the understanding of the procesessta he formulation can be easily
made as optimal with the use of some global opation algorithm which will search for
the weighting matrices. These optimized weightd wibduce the optimal regulator
which will also produce an optimal time domain penfiance which is the main focus of
this paper.

If it is now considered that the unique solutidrtltee CARE (11) b&, the state
feedback gain matrix becomes (13), correspondirigemptimal control signal involving
the states as the loop error and its integro-diffeals (1).

P, R R
F:R‘lBTP:Rl[O 0 —|q B B B
P:s Ps Py
:_R_lK[Ffs Bs F%s] (13)

=K K, K]

Using (10), the corresponding expression for tagesieedback control signal can
be derived as the output of PID controller:

u(t) =-Fx(t)
x,(t)
=-[-K, K, =K ][ %@ (14)
%3(1)
de(?)

=K [e(hdts K ey + K==

The above formulation clearly shows that with juolis choice of weighting
matrices{Q,R}a PID controller can easily be tuned which preseriree achievable

performance of an LQR i.e. minimum deviation in 8tate trajectories with minimum
controller effort. The GA based choice @f Rand its advantages are discussed in the

next section.

2.2. Discrete Time Quadratic Regulator Theory Applied to Optimal Digital PID
Controller Design

It is well known that discrete time realization BID controllers are now more
preferred than their continuous time counterpast,[[27] since the gains of a digital PID
controller can be changed, switched or schedulédeoso as to control complicated time



varying processes over the fixed gain, lossy anedadjzation. In discrete time, the PID
controller structure takes the following form at&lperformance is heavily dependent on
the sampling timeT,).
K.

C(2)=K +—1~+K,(1-Z* 15

()= gyt Kl 7) (15)
Here, the discrete time poles and zeros of theraltert (15) are related with the
continuous time poles and zeros by the followingtren commonly known as bilinear
transformation:

_ 1
z=€% = s=3 1 Z_l (16)
T \1+7Z

Now, in order to do design a discrete PID contradlentrolling the same second
order plant, the augmented system matrices (8)snele discretized with the specified
sampling-time T). Also, the digital PID controller should be destg with the discrete
version of the optimal regulator theory to achieptimal performance with respect to a
quadratic cost function. In fact, the continuousdiLQR based analog PID may not
remain optimal upon discretization with arbitragmgpling time. For this reason it is a

necessity to design optimal discrete PID controlléth discrete version of the LQR
technique.

The basics of discrete time optimal quadratic rafgulis introduced here [27].
For the continuous time augmented system (8),aklk is to design an optimal discrete
time state feedback controller that minimizes tifanite horizon quadratic optimal cost

I=X[X (W Q{ K+ U( B RiK (17)
k=0
Minimization of the quadratic cost given in (17)ads to the solution of the
Discrete Algebraic Riccati Equation (DARE) given (@)
P=Q+G PG- G PH R H PH~ H P (18)
In (18), Q,Rare the positive semi-definite weighting matricesd aPis the

positive definite solution of the discrete time Ahyaic Riccati equation. The discretized
system matrices can be obtained from (8) usingpleeified sampling timé@_as:

G=¢'"
% [ &1 _ 1
H_(jo e d/l)B—(e“ ) A
Matrix Pin (18) produces the optimal discrete time stasstback gain

matrixF which minimizes the discrete time quadratic costcfion (17) using the
following relation, similar to the continuous tirtreatments (13):

(19)

F=(R+H'PH)" H'PG (20)
Thus the optimal discrete time control law is givmsn
u(k)=-Fx(K)

(21)

=—(R+H"PH)" H"PGX R



Root lecus with variation in sampling time (T=0.1 to T=1)
T T T T T T T T

Imaginary Axis

Feal Axis
Fig. 2. Root locus of the discretized open loogeyswith increasing sampling time.

Closed loop pole positions with variation in sampling time (T=0.1 1o T=1)
T T T T T T T T T

Imaginary Axis

Fig. 3. Shifting of closed loop pole locations witlcreasing sampling time.

To demonstrate the necessity of discrete LQR bdss@yn of optimal discrete
PID controller, a continuous time second order esysof the structure (2) has been

considered with specified gain, damping and frequersKk =1,6® = 0.2 = 1. For the
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continuous time regulator design with CARE (11) theighting matrices have been
100

considered a&®={0 1 O|,R=1 Next, the control system with the resulting
0 01

continuous time PID controller (13) is discretizeth sampling timé’sD[O.l,]]. The

open loop root locus and closed loop pole locatiares shown in Fig. 2 and Fig. 3
respectively. It is clear that the dominant compbees and PID controller zeros shift
towards high frequencies thus loosing its domindybamic behavior. Thus, for a
specific sampling tim&,, the optimal controller needs to be derived ughmg discrete

version of the LQR formulation i.e. DARE given 38].

3. LQR Based PID Controller Design with Optimum Selection of Weighting

Matrices
3.1. Effect of Weighting Matrices on the Control System Performance

Step response for Q1 variation Step response for ('.)2 variation

tn
tn
T

Amplitude
Amplitude

=
in

Uncortralled

: . Uncortrollec : H
v B Time t8ec) 18 w0 o s Time %ec) 18 @

Step response for Qa variation Step response for R variation

Amplitude
Amplitude

Uncontralled

Uncontrollzd

B 5 Time {Sec) 1= 0 ° s Time {3ec) 15 =

Fig. 4. Effect of weighting matrices Q and R on tinge response.

Fig. 4 shows the variation in time domain perforocem for the example,
discussed in the previous section with variatiothm weighting matrice, R. With the
variation in elements of matr@}, the overshoot slightly increases with gradudlifafise
time. For high value dR, the time response becomes sluggish. Similar ghgens
could have been found from control signal poinviefv. Therefore, a Genetic Algorithm
based approach has been adopted in this paperpliomwmnm choice of weighting
matrice), R.



3.2. Optimum Selection of Weighting Matrices Using Genetic Algorithm Minimizing
Time Domain Integral Performance | ndex

It is well known [26], the above LQR based PID colér is the most optimal for
a specific choice of the weighting matri€g<R. Indeed, the time domain performance is

heavily affected for any arbitrary choice of theigieing matrices (Fig. 4) although the
optimality in terms of the trade-off between ex@omsof the states trajectories and
controller effort is preserved by the LQR itselheFefore, it is logical to choose the
weighting matrices in an optimum fashion with regtpéo another time domain

performance index as these weighting matrices whitter the state feedback gains (PID
controller gains in this case) while indirectly nitoning the closed loop performance.
Thus, a GA based stochastic optimization is forrbgdminimizing the cost function

J (22) as a weighted sum of ITSE and Integral Squ@wutroller Output (ISCO) as in
[22]-[23]. This tunes the elements of the weightmatrices i.e{Q,,Q,,Q, B of LQR

producing time domain optimal PID.
jzj[vqnuaf(w wOf()] d (22)
0

Here, w,, w, are the corresponding weights of ITSE and ISCO anedconsidered to be

same, so as to put equal penalties on the loopiedex and control signal. The rationale
for using both these parameters in the objectivetfan is to get a good time domain
response and at the same time to limit the coetrautput to avoid actuator saturation
and integral wind-up. At a first glance this migleem as a redundant repetition since the
LQR methodology already gives optimal values of ¢batroller gains with the lowest
cost. However, this is actually obtained for a djpet value of the weighting matrices.
WhenQ, Rare varied, for each choice of weighting matrides LQR would give an

optimal gain with the lowest possible cost, butt thaes not necessarily imply a good
time domain performance. Also, for an optimal ckoaf weighting matrices, the PID
tuning problem becomes optimal due to the intradacbf time domain performance
index (22) as well as the continuous/discrete tiopgimal regulator (LQR) based
approach (9) and (17) respectively involving theestvariables.

3.3. Details of the Genetic Algorithm for Optimal Controller Design

Genetic Algorithm is a stochastic optimization altgon and has been widely
employed in the tuning of PID controllers, subjécte the minimization of a certain cost
function like in [13]-[16], [20]-[23]. Genetic algihm has certain advantages over the
classical gradient based optimization algorithnmeesithey are stochastic in nature and
are less susceptible to get trapped in the locaima within the search space. Initially a
random population of genes (which is essentiallyeator comprising of the decision
variables) is chosen from the search space. Thegrgo reproduction, crossover and

mutation to yield individuals with better fithedswer J value in this case). A scaling
function is converts the raw fitness scores in @nfehat is suitable for the selection
function. Rank fitness scaling is used which scdéllesraw scores on the basis of its
position in the sorted score list. This removeséffect of the spread of the raw scores.
The individuals with higher fitness values have enprobability of creating their copies
in the next generation. This is termed as repradocfTwo parent individuals can do
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information interchange in a probabilistic fashtorcreate a child in the next generation.
This process is known as crossover. In mutatiommallspart of the parent gene is

randomly changed to yield a child. Another factaflexd the elite count is used which

dictates the number of fittest individuals that aodefinitely go to the next generation.

This is generally kept small with respect to therall population so that the dominance
of fitter individuals at the beginning of the siratibn is reduced and premature
convergence is avoided. In this case, the populaire is considered to be 20 and elite
count as 2.

The crossover and mutation fractions of the whad@utation determine the
number of individuals, other than the elite, wholge through crossover and the number
which evolve through mutation respectively. This de pre-specified by the user. The
choice of these values depends on the type of matian. In the present simulation a
crossover fraction of 0.8 and a mutation fractio0.@ are chosen which works well for a
wide variety of problems [28]. A scattered crossofeection is used which creates a
random binary vector and selects the genes wheredbtor has a value of 1 from the
first parent, and the genes where the vector hadug of O from the second parent, and
combines the genes to form the child. For mutatimnGaussian function is used which
adds a random number to each vector entry of awithudl. This random number is
taken from a Gaussian distribution centered ar@emd. The other parameters of GA like
population size, scaling function, selection fumeti elite count, mutation function,
crossover function, which are used in the simutattudies, are also chosen in the lines
of the previous argument. Also, a high penaltynpaesed when the choices of controller
gains give an unstable response. The algorithmrmibated if the maximum number of
iterations is reached or the change in the objedlinction is lower than a specified
tolerance level.

The variables that constitute the search spacether PID controller are

{Q.Q,,Q,R. The intervals of the search space for these hi@sa are

{Q.Q,,Q,R0[0,109. The variables are encoded as real values inlugitam. The

algorithm has also been run several times to ertbatethe true global minima is found
in the search space and the best results havintpwest cost function (along with the
corresponding decision variables) have been rephtwtee.

3.4. Fractional Order Integral Performance Indices and Their Impact on the LQR
Based PID Design

Fractional calculus is a 300 year’s old subject hasg found wide application in
many branches of engineering and science [29]-[Bi¢ fractional order integral of any

arbitrary function f (t) can be represented by the left sided Riemann-Lileugefinition

0|}f (t):mj;f (r)(t-7)"dr, t=0 (23)

The time variable in equation (23) can be replaced by a scale tramsfioong, (r) ie.

1

7 - g,(7). Taking
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gt(r)zr(;_'_l){t”—(t—r)a} (24)
(t _T)a—l

r(a)

Hence, (23) can be written in the form
t

ol ()= [ f (z)dg, (1) (26)

0
Keeping,tfixed, let us consider a 3D curve in the spéz:,eg, f) given by the following

we have,dg, (7) = (25)

expressio, : (7, g (r), f(r)), 0sr<t. Along the curve G if a “fence” is built
perpendicular to the plan@, g) of varying heightf (7) as in Fig. 3, then the shadows
cast on the walls by the fence may be interpreseidlows.

Concept of R-L integration with its projection on different axes

shadow-1
3

25| [RLL

2 1k shadow-|

Fig. 5. Geometric interpretation of fractional ardgegration.

a) The area of the projection of the fence on theep(amf) is given by

3 ()= f (or 27)

0

b) The area of the projection of the fence on theep(eg) f) is given by

21 (1) =] f (r)a(r) (28)

0
Fora =1, equation (24) reduces tgt(r):r and hence both the shadows are equal.

Thus the integer order definite integration is acs@l case of the left sided R-L fractional
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integration even from a geometric perspective. Whisrchanging, the fence changes in
length and shape. The corresponding changes irstiadow on the Walls{g, f)(as

shown in Fig. 6) due to the change of the fencé wihe give a dynamical geometric
interpretation of the fractional integral given leguation (23) as a function of the

variablet .
A

f(t)

bt g™
Fig. 6. Changing shadow on the wall as t changes.

Homogeneous time axis

—

0 1 2 3 4 5 6 7

Heterogeneous time axis

Ll | | | )
I [ | [
01 2 3 4 5

Fig. 7. The concept of homogeneous and heterogsrigne.

The physical interpretation dfj f can be obtained by introducing the notion of a
transformed time scale where the time does not lomogeneously. Considerirg as
the time, the third dimensiow, (7) added to the paiz, f (r)) can be considered as

some kind of a transformed time scale. Thus theepinof two kinds of time arises as

represented in Fig 7.
a) The mathematical timewhich is assumed to be homogeneous and equably

flowing.
b) The transformed timg(r) whose notion can be understood from the following.

Assuming a clock displays the timencorrectly and the relationship between the

12



measured timeand the real tim€& (i.e. the correct or transformed time) is given
byT = g(7).
Hence, when a real time interval T = dg(r)elapses, the time interval measured using
the notion of mathematical timeds . Thus ifv(r) is the measured velocity of a body,
then the wrong value of distance covered is giwethb integral

t

lov(t) = J'v(r)dr (29)
0

whereas the real or actual distance passed is biwen
t

Igv(t) :Iv(r)dg(r) (30)
0

Gutierrezet al. [30] and Podlubny [32] have given the geomettigstration of
fractional order differentiation and integration & lucid manner. Now, a new cost
function is proposed here with the generalizatibrihe order of integration to be any
arbitrary number {\) [25].

97 (w2 (y + wnk())

37=
dt™”

(31)

Change in the shape of integrand with variation of fractional order (A)

09

o
o

te’e)

— == ITSE with A=1

— = -FQ ITSE with A=0.75
———FO ITSE wilh A=05

______

-
———

— = =FO ITSE with A=0.25

Amplitudes
o =1 =1 o
I 2 o ~

o
w

o
T

0.1 s,

Time (s8c)

Fig. 8. Changing shape of integrand (error indeit) wariation in FO of integration.

This new concept of monitoring the order of costction as an extra design tool
highlights the intricacies in the functional fornh the cost function perhaps in a new
resolution. It is therefore logical to get superiand inferior control performance
depending on the order of cost functioh)(for higher and lower than unity. In Chapter
5 of [29], it has been illustrated in a detailednmer that for the FO integrals like that
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represented by (24), the integrand changes itseshéh time unlike evaluation of the
area, under a constant curve for integer ordegiate. The FO integral represents an area
under a transformed function which is dependenthentime step and fractional order
with changing limits [29].

Now, to show the flexibility of fractional order tegral in the error index in
controller design an oscillatory system is considewithK =1,6° = 0.24f = with a

badly tuned PID controller settihg, =2,K; = 2,K, =1 (as a guess solution in the real

coded GA based optimization process and the tinsugon of ITSE has been shown in
Fig. 8. Fig. 8 also shows that the ITSE which isdmhon a first order integration
approaches towards a steady value monotonicaltymesincreases whereas with a low
order of fractional integration/{) the integration no longer remains monotonic figrct

which justifies the fact that the integrand in (34)changing its shape over time [29],

[32]. A few interesting observations can be infdrfeom Fig. 8. Thet @Z(t) curve is

always positive but has an oscillatory behavior énends towards zero with increase in
time. This implies that the process settles downa &teady state value after a transitory
period. Now from our concept of integer order imggpn, which interprets it simply as
an area under a curve, we know that it is mono#tlyiincreasing if the area is positive
as also shown in Fig. 8 for=1. But due to the complicated characteristics of the
fractional order integration, it can be seen thatihtegrand curves are not monotonically
increasing and shows some kind of oscillatory bairavhich is not possible with integer
order integrals. Also the final value of the fracil order integrands vary with time and
none of them reach a steady state value like ttegyen order integral. Thus taking the
final value of the integral in a finite time horizdor the design of the controller or
comparing two designs based on the precept of vimlales may not be appropriate.

For numerical simulation, Riemann-Liouville defiot cannot be applied
directly. Hence, band limited realization of fractal order differ-integrators needs to be
adopted. In the present simulation study, eachtitna&l order element has been
rationalized with Oustaloup’s recursive filter [38fven by the following equation (32)-
(22). If it be assumed that the expected fittingge or frequency range of controller

operation iia)o,cqj), then the higher order filter which approximates £O element

s’ can be written as:

N
G(9=¢ = KrLSHJK (32)
k=N ST
where the poles, zeros, and gain of the filterlmaevaluated as:
K+ N+E(1+y) ket N2 (1)
2N+1 2N+1
%:%(%J ,&fk:%(%j K=a, (33)

In (32) and (34),y is the minimal part of the FO order of the diffetegration and
(2N +1) is the order of the filter. Present study conside" order Oustaloup’s rational

approximation for the FO elements within the frenm:;erangea)D{10‘2 ,102} rad/sec.
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4. Simulations and Results
To show the effectiveness of the proposed methggadoheavily oscillatory and
a sluggish system has been considered of the wteucf2) with parameters

K=1¢&"={0.2,3 wf = I respectively [34], excluding the time delay. GAsbd

selection of weighting matrices yields the PID colér gains as the optimal state-
feedback gains for the continuous and discreteirersf the LQR formulation and has
been reported in Table | and Il respectively alavith the minima of the FO cost
function (J,,,). It is observed from the Tables I-II that the abed minima of the cost

function or J ;. in each cases of integer or fractional order irste less for the CARE

based design than the DARE based one since thidrgabecomes slightly worse for
consideration of the sampled data system whichushnpractical from implementation
point of view. Here, all simulations have been ffon a finite time horizon of 100
seconds.

Table I: Optimum PID Controller Parameters with GAR

Fractional Order of
Process | performance IndexA) i Kp Ki Kd
0.5 14.163 | 1.366073 0.260574 1.776595
Oscillatory 1.0 96.855 | 2.291051 0.234846 3.793601
1.5 842.254| 1.802627 0.246183 2.408207
0.5 16.366 | 1.641867 0.172061 0.168591
Sluggish 1.0 118.156| 1.732432 0.16095 0.173052
1.5 999.961| 1.892469 0.252889 0.198146
Table Il: Optimum PID Controller Parameters with BB
Fractional Order of
Process Performance Index Jmin Kp Ki Kd
(A)
0.5 14.85861| 0.098238 0.171755 0.198904
Oscillatory 1.0 103.9139] 0.097949 0.170926 0.198634
1.5 940.4062| 0.101853 0.175119 0.204367
0.5 16.65402| 1.351018 0.16446 0.134639
Sluggish 1.0 120.8922| 1.527714 0.14705 0.151819
15 1173.427| 1.389176 0.150055 0.138Q47

Since the performance index itself is different floe designs (due to change of
the fractional orden), hence numerically comparing the valueslgf in Tables 1 and 2
is not justified. Thus some other criteria mustelbeployed to determine which of these
performance indices actually gives a better desigis has been done in the later part of
this section by comparing the cost of control & ttesigned LQR controllers, from the
obtained Riccati solutions & matrices. Another observation from the Tablesd 2is
that, as the fractional order of the integrand eases, the numerical value dJf,

increases. Though the original function within tinéegral (t@z(t)) might be same,
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integration of the function with <1, would give a lower final value of _,, than that

given by A =1 as shown in Fig. 8. Foh >1, the values would be higher than that given
by A =1due to the inherent nature of the memory effecégmein the fractional integral
[29]-[32].

The time responses with the optimal PID controlierscontrol the oscillatory
process have been compared in Fig. 9 and the assoaontrol signals in Fig. 10. It is
seen from Fig. 9 that the load disturbance rejagberformance of the continuous time
LQR based PID controllers are better than theicrdi® versions since the sensitivity
reduction issues have not been considered in theniaption process. However, the set-
point tracking performances are satisfactory fahsa lightly damped open loop process
with both types of controllers. Also, the discret@R based PID controllers give low and
smoother control action (Fig. 10) compared to tlentiouous time optimal PID
controllers, This especially important to make alseuator jerk free.

Similar observations can be made from Fig. 11sh®wing the time response and
control signals corresponding to the sluggish plénts evident from Fig. 11 that the
discrete LQR based PID controllers give dead-be&fpsint tracking while the load
disturbance performances are also comparable Wwi&hcontinuous time counterparts
unlike that with the oscillatory system. Also, imporating digital PID controller
designed with discrete LQR one can achieve smallsmmooth control signals (Fig. 12)
which helps to reduce size of the actuator anééseciated costs.

Time response of the LAR based PID controller handling the oscillatory process

Amplitude

———Continuous LAR with A=0.5
: Continuous LQR with A=1
3| == Continuous LQR with £.=1.5
———Discrete LAR with A=05

: Discrete LQR with A=1

: © | == -Discrete LOR with A=1.5
2% 2‘0 alu EID alu m‘u 120

Time (sec)

Fig. 9. Unit Set-point and load disturbance respdnsthe oscillatory plant.
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Control signals of the LQR based PID controller handling the oscillatory process
T T T T

Amplitude

———Continuous LGR with A=05
: Continuous LAR with A=1 |7
)| === Continuous LAR with A=15
|| ———Discreta LOR with A=05
Discrete LOR with A=1

| = = -Discrete LQR with A=15
AID BID EID m‘n 120

Time (5ec)

Fig. 10. Control signals of the optimal PID conleead for the oscillatory plant.

Time response of the LAR based PID controller handling the sluggish process

0s

o
2]

Amplitude

0.4

= ==Continuous LGR with A=05
: Continuous LAR with A=1
| ==~ Continuous LQR with A=15
———Discrete LAR with A=0.5
: Discrete LOR with A=1
o| == -Discrete LAR with A=1.5

0 a0 100 180

Time (sec)

Fig. 11. Unit Set-point and load disturbance respdor the sluggish plant.
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Control Signals of the LQR based PID controller handling the sluggish process
22 T T

Amplitude

i| === Continuous LQR with =05
: Continuous LAR with A=1 K
S| Continuous LOR with A=1.5
*| ———Discrete LOR with A=0 5
Discrete LAR with A=1

i| == -Discrete LOR with A=15

0& i i
0 50 100 150
Time (5ec)

Fig. 12. Control signals of the optimal PID conlecs for the sluggish plant.

From the above figures it has been seen the tisporeses and control signals are
significantly different for the continuous and diste time LQR based controllers but are
almost same for variation with the order of frantborder integral. The rationale of
incorporating the FO of the time domain integralfpenance index as an extra design
freedom has been illustrated here. Since, theisolmethodology is to search for a set
of weighting matrices of LQR which produces goaddiresponse in terms of low error
index and controller effort, each controller stigedback gain (discrete PID parameters)
in Table Il is associated with a unique set of Ww&igg matrices satisfying the discrete
algebraic Riccati equation (18). These GA baseectieh of weighting matrices would
produce a unique Riccati solution given be the m&uwhich is also a measure of the
associated cost of control for the LQR. The DAREdmaRIccati solutions for controlling
the lightly damped process has been reported (@ for varying level of FO of cost
function (A\), representing the same cost function in differesblutions.

[38.3375 20.8896 34.873
P._,.=|20.8896 17.4583 19.973; (34)
34.8736 19.9732 40.36

[56.4828 30.7708 51.392

,=|30.7708 25.9626 29.49 (35)
51.3929 29.4921 59.69§

[61.3195 33.6054 55.59

P_.=|33.6054 28.8308 32.38 (36)
|55.5945 323811 64.84
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Also, Riccati solutions associated with the DAREsdxh discrete PID controller gains
have been reported in (37)-(39) for varying levieho
[ 247.25  1065.1 105.096

P_.=| 10651 8733.6 863.254 (37)
105.0964 863.2543  86.053

[42.8740 172.0613 16.948]
P_,=|172.0613 1789.5 176.08 (38)
16.9487 176.0818 17.494

[40.2110 170.5117 16.818
P._.=|170.5117 1578.077 155.69 (39)
| 16.8189 155.6976 15.468k

It is shown in [26] that the infinite time performze index (17) can be calculated from
the Riccati solution P matrix) using the initial values of the state vhlés i.e.

3=xT(0)Px(0)=g[>I(@Q>( b+ G k RO K (40)

For a PID controller as in our case, initial valoéghe state variables (i.e. error,
its rate and integral) can not be calculated diyet find out the optimal control cost
(23) since with a step-input excitation the initiilue of the error rate will tend to
infinity and initial value of integral error willehd to zero with the initial value of error
signal remaining one. To overcome this problem féi®wing methodology has been
adopted. Here, eigen-values of the GA based diffex® matrices (with DARE) are
evaluated, corresponding to the gains in TablEdt.the oscillatory system wigh=10.2,

eig( P~ Poos) =[1.9362 2.9975 41.04§7

(41)
eig(PLs— Rio) =[0.7795 0.9049 11.17]0
Similarly, for the sluggish system wifh=5,
eig(Pos— P_,o)=[6 88.1 7128 “2)

eig(PLo— R_is) =[0.0601 2.6516 213.41p€

Clearly, the eigen-values in (41) and (42) are tpasiwhich indicates that the
differential matrices in left hand side of (41) gd@) are positive definite. Now, it is well
known that for any two Riccati solutioRs P, with B > P,, considering initial value of the

state variables a€0), pre-multiplication withx" (0)and post-multiplication witt(0)
yields the comparison of the associated LQR costs:
X' (0RX0)> X (0)RX0) = J> ] (43)
Here, the comparison of cost of control for LQRdzh®ID controller design has
been adopted from other fractional order approaabfeguaranteed dominant pole
placement [35]. From (41)-(43) it is clear that lghdesigning an optimum discrete time
LQR based digital PID controller to control an dstory system, the cost of control
increases for higher values of the fractional ondézgral performance index whereas,
the converse is true for discrete time LQR-PID oanof a sluggish system. It can also
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be seen that the fractional order is essentiallyadditional degree of freedom in the
design process and for both the cases the frattiamtker performance index based
approach is better than the integer order casem feguation (41), we find that for the

cost of controlx’ (0)P,_, . X(0)> X (0)P_, ,X0)> X (0) R., X0, and from equation (42),
we havex' (0)P,_,x(0)< X (0)P_, ,X0)< X (0)R.,. X0. Thus it can be observed that

in both cases the integer order case lies in betvilee fractional order cases. For the
sluggish processes)\ =1.5 gives the best design (lowest cost of control) d&od
oscillatory processes=0.5, gives the best design. Therefore, it is recomradrd set
low values of the FOA <1) for controlling oscillatory processes and highuea of FO
(A >1) for the control of sluggish processes in theteaby order cost function (31).

5. Conclusion

GA based optimum selection of weighting matricegehlaeen done for the design
of a discrete time LQR. Conventional PID controkkssign has been generalized as a
LQR problem for the control of second order slubgasd oscillatory systems. The cost
of control for the LQR-PID design has been showrbé& dependent on the process
characteristics, also the damping and the fractiorder of the cost function. It is shown
that the effect of inherent long memory behaviothia fractional differ-integrals can give
interesting results which can be effectively haseesto give better controller designs.
Recommendation for choice of fractional order aftdoinction in LQR weight selection
shows that the problem can be applied for the obrdf wide variety of industrial
processes. Future scope of research can be dirent@dds extension of the proposed
methodology to Linear Quadratic Gaussian (LQG) [@wmis considering noisy
measurements and disturbances.
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