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Abstract: 
The continuous and discrete time Linear Quadratic Regulator (LQR) theory has been 
used in this paper for the design of optimal analog and discrete PID controllers 
respectively. The PID controller gains are formulated as the optimal state-feedback gains, 
corresponding to the standard quadratic cost function involving the state variables and the 
controller effort. A real coded Genetic Algorithm (GA) has been used next to optimally 
find out the weighting matrices, associated with the respective optimal state-feedback 
regulator design while minimizing another time domain integral performance index, 
comprising of a weighted sum of Integral of Time multiplied Squared Error (ITSE) and 
the controller effort. The proposed methodology is extended for a new kind of fractional 
order (FO) integral performance indices. The impact of fractional order (as any arbitrary 
real order) cost function on the LQR tuned PID control loops is highlighted in the present 
work, along with the achievable cost of control. Guidelines for the choice of integral 
order of the performance index are given depending on the characteristics of the process, 
to be controlled. 
 
Keywords: fractional calculus; integral performance index; Linear Quadratic Regulator 
(LQR); optimal control; PID controller tuning 
 
1. Introduction 

Classical optimal control theory has evolved over decades to formulate the well 
known Linear Quadratic Regulators which minimizes the excursion in state trajectories of 
a system while requiring minimum controller effort [1]. This typical behaviour of LQR 
has motivated control designers to use it for the tuning of PID controllers [2]-[3]. PID 
controllers are most common in process industries due to its simplicity, ease of 
implementation and robustness. Using the Lyapunov’s method, the optimal quadratic 
regulator design problem reduces to the Algebraic Riccati Equation (ARE) which is 
solved to calculate the state feedback gains for a chosen set of weighting matrices. These 
weighting matrices regulate the penalties on the deviation in the trajectories of the state 
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variables (x ) and control signal (u ). Indeed, with an arbitrary choice of weighting 
matrices, the classical state-feedback optimal regulators seldom show good set-point 
tracking performance due to the absence of integral term unlike the PID controllers. 
Thus, combining the tuning philosophy of PID controllers with the concept of LQR 
allows the designer to enjoy both optimal set-point tracking and optimal cost of control 
within the same design framework. 

Optimal control theory has been extended to tune PID controllers in few recent 
literatures. In Choi and Chung [4], an inverse optimal PID controller is designed 
considering the error and its integro-differential as the state variables, similar to the 
approach, presented in this paper. In Arruda et al. [5], a custom cost function has been 
minimized with GA to design multi-loop PID controllers as the weighted sum of ITSE 
and variance of the manipulated variable and controlled variable. PID controller tuning 
with state-space approach using the error and its first and second order derivative has 
been investigated in [6]-[7]. The method proposed LQR-PID of He et al. [2]-[3] has been 
extended for first and second order systems with zeros in the process model in 
Ghartemani et al. [8]. Ochi and Kondo [9] have shown that the integral type optimal 
servo for second order system can be reduced to a LQR problem and an optimal I-PD 
controller can be designed with this technique. Several classical optimal and robust 
control approaches of PID controller can be cast into a Linear Matrix Inequality (LMI) 
problem as in Ge et al. [10] which consider the controlled variable, its rate and integral of 
error as the state variables. 

Genetic algorithm and other stochastic global optimization techniques have also 
been employed for various optimal control problems. Wang et al. [11] used GA to 
optimally find out the weighting matrices of LQR i.e.QandRwith a specified structure. 
The concept of GA based optimum selection of weighting matrices has been extended for 
LQR as well as pole placement problems in Poodeh et al. [12]. GA based optimal time 
domain [13] and frequency domain loop-shaping [14] based PID tuning problems are also 
popular in the contemporary research community. The mixed H2/H∞ optimal PID 
controller tuning of Chen et al. [14] has been improved with GA as a single objective 
disturbance rejection PID controller in Krohling and Rey [15] and as multi-objective 
loop-shaping based design in Lin et al. [16]. A wide class of standard optimal control 
problems has been solved using evolutionary and swarm intelligence based global 
optimization techniques in Ghosh et al. [17], [18]. 

Fractional order systems and controllers are becoming increasingly popular in the 
automation and process control community. A state of the art survey on the design and 
application of fractional order system and controllers can be found in [19]. For optimum 
set-point tracking control of PID/FOPID controllers, time domain performance index 
optimization based tuning techniques are more popular and have been applied in Cao et 
al. [20], Das et al. [21] and Pan et al. [22], [23]. The impact of choosing the weighting 
matrices of LQR are discussed by Saif [24] in a detailed manner. The present 
methodology selects the weighting matrices for the quadratic regulator design similar to 
that in [11], [12], using Genetic Algorithm while minimizing a suitable time domain 
performance index. Then a new arbitrary (fractional) order integral performance index 
has been used as the objective function of GA, as suggested by Romero et al. [25] for 
signal processing applications. The impact of these new FO integral indices based PID 
design on the closed loop control performance as well as the corresponding optimality of 
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the quadratic regulators are also highlighted in the present work. An analog PID 
controller and its discretized form a digital PID both have been tuned with the proposed 
optimum weight selection based corresponding continuous and discrete time LQR 
techniques for second order systems with very low and high damping as two illustrative 
examples. 

The rest of the paper is organized as follows. Section 2 discusses about the 
theoretical framework for LQR based optimal analog and digital PID controller design. 
Section 3 proposes the GA based optimum weight selection methodology for LQR tuning 
of PID controllers. Section 4 validates the proposed argument with two classes of second 
order systems as two illustrative examples. The paper ends with the conclusion as section 
5, followed by the references. 
 
2. Formulation of LQR Based Optimal PID Controller for Second Order Systems 
2.1. Tuning of PID Controllers as Continuous Time Linear Quadratic Regulators  

He et al. [2]-[3] has given a formulation for tuning over-damped or critically-
damped second order systems having two real open loop process poles. The concept has 
been extended in this sub-section for lightly damped processes as well. Also, in [2], it has 
been suggested that one of the real poles needs to be cancelled out by placing one of the 
controller zeros at the same position on the negative real axis of complex s-plane. Thus 
the second order plant to be controlled with a PID controller can be reduced to a first 
order process to be controlled by a PI controller. Indeed, this approach of He et al. [2] 
does not hold for lightly damped processes having oscillatory open loop dynamics as 
such reduction in not possible in this case. With the approach of optimal PID tuning for 
second order processes in [2], also the provision of simultaneously and optimally finding 
the three parameters of a PID controller (i.e. , ,p i dK K K ) is lost that has been addressed in 

this paper. The present approach assumes the error, its rate and integral as the state 
variables and designs the optimal state-feedback controller gains as the PID controller 
parameters (Fig. 1). 

 
Fig.1. LQR Formulation of PID controller for second order processes. 
 

In Fig. 1, a PID controller in parallel form (with proportional, integral and 
derivative gains as , ,p i dK K K ) has been considered to control a second order system with 

known open loop damping ratio and natural frequency i.e. ,ol ol
nξ ω respectively. If the 

feedback control system is excited with an external input ( )r t to get a control signal ( )u t  
and output ( )y t , then let us define the state variables as: 
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1 2 3

( )
( ) , ( ),

de t
x e t dt x e t x

dt
= = =∫                        (1) 

From the block diagram presented in Fig. 1, it is clear that 

( )22

( ) ( )

( ) ( )2 ol ol ol
n n

Y s K E s

U s U ss sξ ω ω
−= =

+ +
                         (2) 

In the case of feedback design, the external set-point does not affect the controller 
design i.e. ( ) 0r t = . In (2), the relation ( ) ( )y t e t= − is valid for standard regulator problem 
as in He et al. [2], when the formulation is dependent on the set point. Thus, equation (2) 
turns out to be 

( )22 2 ( ) ( )ol ol ol
n ns s E s KU sξ ω ω + + = −  

             (3) 

( )2
2 ol ol ol

n ne e e Kuξ ω ω⇒ + + = −ɺɺ ɺ               (4) 

Using (1), equation (4) can be re-written as: 

( )2

3 3 22 ol ol ol
n nx x x Kuξ ω ω+ + = −ɺ                                   (5) 

Using (1) and (5) the state space formulation becomes: 

( )

1 1

2 2

2
3 3

0 1 0 0

0 0 1 0

0 2ol ol ol
n n

x x

x x u

x x Kω ξ ω

 
      
      = +      
     −      − − 

ɺ

ɺ

ɺ

            (6) 

Comparing (6) with the standard state-space representation i.e. 
( ) ( ) ( )x t Ax t Bu t= +ɺ                 (7) 

we get the system matrices as: 

( )2

0 1 0 0

0 0 1 , 0

0 2ol ol ol
n n

A B

Kω ξ ω

 
  
  = =   
 −  − − 

                        (8) 

In order to have a LQR formulation with the system (7), the following quadratic cost 
function (J ) is minimized 

0

( ) ( ) ( ) ( )T TJ x t Qx t u t Ru t dt
∞

 = + ∫                          (9)  

It has been shown in [26] that minimization of cost function (9) gives the state feedback 
control law as: 

1( ) ( ) ( )Tu t R B Px t Fx t−= − = −              (10) 
where, P is the symmetric positive definite solution of the Continuous Algebraic Riccati 
Equation (CARE) given by (11) 

1 0T TA P PA PBR B P Q−+ − + =                        (11)  
Here, the weighting matrix Q is symmetric positive semi-definite and the 

weighting factor R is a positive number. It is a common practice in optimal control to 
design regulators with varyingQ , while keepingR fixed [24] and generally they are 
designed with user specified closed loop performance specifications [2]. Here, Solution 
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of the CARE (11) theP  matrix is generally symmetric and weighting matrix Q  is chosen 
to be a diagonal one whose elements needs to be set by the designer: 

11 12 13 1

12 22 23 2

13 23 33 3

0 0

, 0 0

0 0

P P P Q

P P P P Q Q

P P P Q

   
   = =   
      

           (12) 

To impose high penalty on a specific state variables the elements of the matrix Qcan be 
chosen intuitively. Also, weighting factorRregulates the penalty on the control signal to 
prevent actuator saturation. In most cases, these weights ,Q Rare chosen with designer’s 
expertise from the understanding of the process states. The formulation can be easily 
made as optimal with the use of some global optimization algorithm which will search for 
the weighting matrices. These optimized weights will produce the optimal regulator 
which will also produce an optimal time domain performance which is the main focus of 
this paper. 
 If it is now considered that the unique solution of the CARE (11) beP , the state 
feedback gain matrix becomes (13), corresponding to the optimal control signal involving 
the states as the loop error and its integro-differentials (1). 

[ ]

[ ]

11 12 13
1 1

12 22 23

13 23 33

1
13 23 33

0 0T

i p d

P P P

F R B P R K P P P

P P P

R K P P P

K K K

− −

−

 
 = = −  
  

= −

 = −  

                     (13) 

Using (10), the corresponding expression for the state feedback control signal can 
be derived as the output of PID controller: 

1

2

3

( ) ( )

( )

( )

( )

( )
( ) ( )

i p d

i p d

u t Fx t

x t

K K K x t

x t

de t
K e t dt K e t K

dt

= −

 
  = − − − −   
  

= + +∫

                   (14) 

The above formulation clearly shows that with judicious choice of weighting 
matrices { },Q R a PID controller can easily be tuned which preserves the achievable 

performance of an LQR i.e. minimum deviation in the state trajectories with minimum 
controller effort. The GA based choice of ,Q Rand its advantages are discussed in the 
next section. 
 
2.2. Discrete Time Quadratic Regulator Theory Applied to Optimal Digital PID 
Controller Design 

It is well known that discrete time realization of PID controllers are now more 
preferred than their continuous time counterpart [13], [27] since the gains of a digital PID 
controller can be changed, switched or scheduled online so as to control complicated time 
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varying processes over the fixed gain, lossy analog realization. In discrete time, the PID 
controller structure takes the following form and its performance is heavily dependent on 
the sampling time (sT ). 

( ) ( ) ( )1

1
1

1
i

p d

K
C z K K z

z
−

−
= + + −

−
            (15) 

Here, the discrete time poles and zeros of the controller (15) are related with the 
continuous time poles and zeros by the following relation commonly known as bilinear 
transformation: 

1

1

2 1

1
ssT

s

z
z e s

T z

−

−

 −= ⇒ =  + 
             (16) 

Now, in order to do design a discrete PID controller controlling the same second 
order plant, the augmented system matrices (8) needs to be discretized with the specified 
sampling-time ( sT ). Also, the digital PID controller should be designed with the discrete 

version of the optimal regulator theory to achieve optimal performance with respect to a 
quadratic cost function. In fact, the continuous time LQR based analog PID may not 
remain optimal upon discretization with arbitrary sampling time. For this reason it is a 
necessity to design optimal discrete PID controller with discrete version of the LQR 
technique. 

The basics of discrete time optimal quadratic regulator is introduced here [27]. 
For the continuous time augmented system (8), the task is to design an optimal discrete 
time state feedback controller that minimizes the infinite horizon quadratic optimal cost 

� ( ) ( ) ( ) ( )
0

T T

k

J x k Qx k u k Ru k
∞

=

 = + ∑            (17) 

Minimization of the quadratic cost given in (17) leads to the solution of the 
Discrete Algebraic Riccati Equation (DARE) given by (18) 

( ) 1T T T TP Q G PG G PH R H PH H PG
−

= + − +           (18) 

In (18), ,Q Rare the positive semi-definite weighting matrices and P is the 
positive definite solution of the discrete time Algebraic Riccati equation. The discretized 
system matrices can be obtained from (8) using the specified sampling time sT as: 

( ) ( ) 1

0

s

s
s

AT

T ATA

G e

H e d B e I A Bλ λ −

=

= = − ∫

                       (19) 

Matrix P in (18) produces the optimal discrete time state-feedback gain 
matrixF which minimizes the discrete time quadratic cost function (17) using the 
following relation, similar to the continuous time treatments (13): 

( ) 1T TF R H PH H PG
−

= +                         (20) 

Thus the optimal discrete time control law is given by: 
( ) ( )

( ) ( )1T T

u k Fx k

R H PH H PGx k
−

= −

= − +
                       (21) 
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Fig. 2. Root locus of the discretized open loop system with increasing sampling time. 

 
Fig. 3. Shifting of closed loop pole locations with increasing sampling time. 
 

To demonstrate the necessity of discrete LQR based design of optimal discrete 
PID controller, a continuous time second order system of the structure (2) has been 
considered with specified gain, damping and frequency as 1, 0.2, 1ol ol

nK ξ ω= = = . For the 
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continuous time regulator design with CARE (11) the weighting matrices have been 

considered as

1 0 0

0 1 0 , 1.

0 0 1

Q R

 
 = = 
  

 Next, the control system with the resulting 

continuous time PID controller (13) is discretized with sampling time [ ]0.1,1sT ∈ . The 

open loop root locus and closed loop pole locations are shown in Fig. 2 and Fig. 3 
respectively. It is clear that the dominant complex poles and PID controller zeros shift 
towards high frequencies thus loosing its dominant dynamic behavior. Thus, for a 
specific sampling timesT , the optimal controller needs to be derived using the discrete 

version of the LQR formulation i.e. DARE given by (18). 
 
3. LQR Based PID Controller Design with Optimum Selection of Weighting 
Matrices 
3.1. Effect of Weighting Matrices on the Control System Performance 

 
Fig. 4. Effect of weighting matrices Q and R on the time response. 
 

Fig. 4 shows the variation in time domain performances for the example, 
discussed in the previous section with variation in the weighting matrices,Q R. With the 
variation in elements of matrixQ , the overshoot slightly increases with gradual fall in rise 
time. For high value ofR , the time response becomes sluggish. Similar observations 
could have been found from control signal point of view. Therefore, a Genetic Algorithm 
based approach has been adopted in this paper for optimum choice of weighting 
matrices ,Q R. 
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3.2. Optimum Selection of Weighting Matrices Using Genetic Algorithm Minimizing 
Time Domain Integral Performance Index 

It is well known [26], the above LQR based PID controller is the most optimal for 
a specific choice of the weighting matrices,Q R. Indeed, the time domain performance is 
heavily affected for any arbitrary choice of the weighting matrices (Fig. 4) although the 
optimality in terms of the trade-off between excursion of the states trajectories and 
controller effort is preserved by the LQR itself. Therefore, it is logical to choose the 
weighting matrices in an optimum fashion with respect to another time domain 
performance index as these weighting matrices determine the state feedback gains (PID 
controller gains in this case) while indirectly monitoring the closed loop performance. 
Thus, a GA based stochastic optimization is formed by minimizing the cost function 
�J (22) as a weighted sum of ITSE and Integral Squared Controller Output (ISCO) as in 
[22]-[23]. This tunes the elements of the weighting matrices i.e. { }1 2 3, , ,Q Q Q R  of LQR 

producing time domain optimal PID. 

� 2 2
1 2

0

( ) ( )J w t e t w u t dt
∞

 = ⋅ ⋅ + ⋅ ∫                        (22) 

Here, 1 2,w w are the corresponding weights of ITSE and ISCO and are considered to be 

same, so as to put equal penalties on the loop error index and control signal. The rationale 
for using both these parameters in the objective function is to get a good time domain 
response and at the same time to limit the controller output to avoid actuator saturation 
and integral wind-up. At a first glance this might seem as a redundant repetition since the 
LQR methodology already gives optimal values of the controller gains with the lowest 
cost. However, this is actually obtained for a specified value of the weighting matrices. 
When ,Q Rare varied, for each choice of weighting matrices the LQR would give an 
optimal gain with the lowest possible cost, but that does not necessarily imply a good 
time domain performance. Also, for an optimal choice of weighting matrices, the PID 
tuning problem becomes optimal due to the introduction of time domain performance 
index (22) as well as the continuous/discrete time optimal regulator (LQR) based 
approach (9) and (17) respectively involving the state variables. 
 
3.3. Details of the Genetic Algorithm for Optimal Controller Design 

Genetic Algorithm is a stochastic optimization algorithm and has been widely 
employed in the tuning of PID controllers, subjected to the minimization of a certain cost 
function like in [13]-[16], [20]-[23]. Genetic algorithm has certain advantages over the 
classical gradient based optimization algorithms since they are stochastic in nature and 
are less susceptible to get trapped in the local minima within the search space. Initially a 
random population of genes (which is essentially a vector comprising of the decision 
variables) is chosen from the search space. They undergo reproduction, crossover and 
mutation to yield individuals with better fitness (lower �J  value in this case). A scaling 
function is converts the raw fitness scores in a form that is suitable for the selection 
function. Rank fitness scaling is used which scales the raw scores on the basis of its 
position in the sorted score list. This removes the effect of the spread of the raw scores. 
The individuals with higher fitness values have more probability of creating their copies 
in the next generation. This is termed as reproduction. Two parent individuals can do 
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information interchange in a probabilistic fashion to create a child in the next generation. 
This process is known as crossover. In mutation a small part of the parent gene is 
randomly changed to yield a child. Another factor called the elite count is used which 
dictates the number of fittest individuals that would definitely go to the next generation. 
This is generally kept small with respect to the overall population so that the dominance 
of fitter individuals at the beginning of the simulation is reduced and premature 
convergence is avoided. In this case, the population size is considered to be 20 and elite 
count as 2.  

The crossover and mutation fractions of the whole population determine the 
number of individuals, other than the elite, who evolve through crossover and the number 
which evolve through mutation respectively. This can be pre-specified by the user. The 
choice of these values depends on the type of optimization. In the present simulation a 
crossover fraction of 0.8 and a mutation fraction of 0.2 are chosen which works well for a 
wide variety of problems [28]. A scattered crossover function is used which creates a 
random binary vector and selects the genes where the vector has a value of 1 from the 
first parent, and the genes where the vector has a value of 0 from the second parent, and 
combines the genes to form the child. For mutation the Gaussian function is used which 
adds a random number to each vector entry of an individual. This random number is 
taken from a Gaussian distribution centered around zero. The other parameters of GA like 
population size, scaling function, selection function, elite count, mutation function, 
crossover function, which are used in the simulation studies, are also chosen in the lines 
of the previous argument. Also, a high penalty is imposed when the choices of controller 
gains give an unstable response. The algorithm is terminated if the maximum number of 
iterations is reached or the change in the objective function is lower than a specified 
tolerance level.  

The variables that constitute the search space for the PID controller are 
{ }1 2 3, , ,Q Q Q R . The intervals of the search space for these variables are 

{ } [ ]1 2 3, , , 0,100Q Q Q R ∈ . The variables are encoded as real values in the algorithm. The 

algorithm has also been run several times to ensure that the true global minima is found 
in the search space and the best results having the lowest cost function (along with the 
corresponding decision variables) have been reported here. 
 
3.4. Fractional Order Integral Performance Indices and Their Impact on the LQR 
Based PID Design 

Fractional calculus is a 300 year’s old subject and has found wide application in 
many branches of engineering and science [29]-[31]. The fractional order integral of any 
arbitrary function ( )f t can be represented by the left sided Riemann-Liouville definition 

as: 

( ) ( ) ( )( ) 1

0 0

1
, 0

t

tI f t f t d t
αα τ τ τ

α
−= − ≥

Γ ∫                       (23) 

The time variableτ in equation (23) can be replaced by a scale transformation ( )tg τ , i.e. 

( )tgτ τ→ . Taking 
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( ) ( ) ( ){ }1

1tg t t
αατ τ

α
= − −

Γ +
          (24) 

we have, ( ) ( )
( )

1

t

t
dg

ατ
τ

α

−−
=

Γ
          (25) 

Hence, (23) can be written in the form 

( ) ( ) ( )0

0

t

t tI f t f dgα τ τ= ∫              (26) 

Keeping, t fixed, let us consider a 3D curve in the space ( ), ,g fτ  given by the following 

expression ( ) ( )( ): , , , 0t tC g f tτ τ τ τ≤ ≤ . Along the curve tC if a “fence” is built 

perpendicular to the plane ( ), gτ of varying height ( )f τ  as in Fig. 3, then the shadows 

cast on the walls by the fence may be interpreted as follows. 

 
Fig. 5. Geometric interpretation of fractional order integration. 
 

a) The area of the projection of the fence on the plane ( ), fτ  is given by  

 ( ) ( )1
0

0

t

I f t f dτ τ= ∫         (27) 

b) The area of the projection of the fence on the plane ( ),g f  is given by 

 ( ) ( ) ( )0

0

t

I f t f dgα τ τ= ∫          (28) 

For 1α = , equation (24) reduces to ( )tg τ τ=  and hence both the shadows are equal. 

Thus the integer order definite integration is a special case of the left sided R-L fractional 
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integration even from a geometric perspective. When t is changing, the fence changes in 
length and shape. The corresponding changes in the shadow on the walls ( ),g f (as 

shown in Fig. 6) due to the change of the fence with time give a dynamical geometric 
interpretation of the fractional integral given by equation (23) as a function of the 
variablet . 

 
Fig. 6. Changing shadow on the wall as t changes. 
 

 
Fig. 7. The concept of homogeneous and heterogeneous time. 
 

The physical interpretation of 0I fα can be obtained by introducing the notion of a 

transformed time scale where the time does not flow homogeneously. Considering τ  as 
the time, the third dimension ( )tg τ  added to the pair ( )( ), fτ τ  can be considered as 

some kind of a transformed time scale. Thus the concept of two kinds of time arises as 
represented in Fig 7. 

a) The mathematical timeτ which is assumed to be homogeneous and equably 
flowing. 

b) The transformed time( )g τ  whose notion can be understood from the following. 

Assuming a clock displays the timeτ incorrectly and the relationship between the 
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measured timeτ and the real timeT  (i.e. the correct or transformed time) is given 
by ( )T g τ= . 

Hence, when a real time interval of ( )dT dg τ= elapses, the time interval measured using 

the notion of mathematical time isdτ . Thus if ( )v τ  is the measured velocity of a body, 

then the wrong value of distance covered is given by the integral 

( ) ( )1
0

0

t

I v t v dτ τ= ∫           (29)  

whereas the real or actual distance passed is given by 

( ) ( ) ( )0

0

t

I v t v dgα τ τ= ∫           (30)  

Gutierrez et al. [30] and Podlubny [32] have given the geometric illustration of 
fractional order differentiation and integration in a lucid manner. Now, a new cost 
function is proposed here with the generalization of the order of integration to be any 
arbitrary number (Λ ) [25].  

� ( )2 2
1 2( ) ( )

d
J w t e t w u t

dt

−Λ∗

−Λ= ⋅ ⋅ + ⋅                        (31)  

 
Fig. 8. Changing shape of integrand (error index) with variation in FO of integration. 
 

This new concept of monitoring the order of cost function as an extra design tool 
highlights the intricacies in the functional form of the cost function perhaps in a new 
resolution. It is therefore logical to get superior and inferior control performance 
depending on the order of cost function (Λ ) for higher and lower than unity.  In Chapter 
5 of [29], it has been illustrated in a detailed manner that for the FO integrals like that 
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represented by (24), the integrand changes its shape with time unlike evaluation of the 
area, under a constant curve for integer order integrals. The FO integral represents an area 
under a transformed function which is dependent on the time step and fractional order 
with changing limits [29].  

Now, to show the flexibility of fractional order integral in the error index in 
controller design an oscillatory system is considered with 1, 0.2, 1ol ol

nK ξ ω= = = with a 

badly tuned PID controller setting 2, 2, 1p i dK K K= = =  (as a guess solution in the real 

coded GA based optimization process and the time evolution of ITSE has been shown in 
Fig. 8. Fig. 8 also shows that the ITSE which is based on a first order integration 
approaches towards a steady value monotonically as time increases whereas with a low 
order of fractional integration (Λ ) the integration no longer remains monotonic function 
which justifies the fact that the integrand in (31) is changing its shape over time [29], 
[32]. A few interesting observations can be inferred from Fig. 8. The ( )2t e t⋅  curve is 

always positive but has an oscillatory behavior and it tends towards zero with increase in 
time. This implies that the process settles down to a steady state value after a transitory 
period. Now from our concept of integer order integration, which interprets it simply as 
an area under a curve, we know that it is monotonically increasing if the area is positive 
as also shown in Fig. 8 for 1Λ = . But due to the complicated characteristics of the 
fractional order integration, it can be seen that the integrand curves are not monotonically 
increasing and shows some kind of oscillatory behavior which is not possible with integer 
order integrals. Also the final value of the fractional order integrands vary with time and 
none of them reach a steady state value like the integer order integral. Thus taking the 
final value of the integral in a finite time horizon for the design of the controller or 
comparing two designs based on the precept of final values may not be appropriate.     

For numerical simulation, Riemann-Liouville definition cannot be applied 
directly. Hence, band limited realization of fractional order differ-integrators needs to be 
adopted. In the present simulation study, each fractional order element has been 
rationalized with Oustaloup’s recursive filter [33], given by the following equation (32)-
(22). If it be assumed that the expected fitting range or frequency range of controller 
operation is( ),b hω ω , then the higher order filter which approximates the FO element 

sγ can be written as: 

( )
N

k
f

k N k

s
G s s K

s
γ ω

ω=−

′+= =
+∏              (32) 

where the poles, zeros, and gain of the filter can be evaluated as: 
1 1

(1 ) (1 )
2 2

2 1 2 1

, ,

k N k N

N N
h h

k b k b h
b b

K

γ γ

γω ωω ω ω ω ω
ω ω

+ + + + + −

+ +   ′= = =   
   

         (33) 

In (32) and (34), γ  is the minimal part of the FO order of the differ-integration and 

( )2 1N +  is the order of the filter. Present study considers a 5th order Oustaloup’s rational 

approximation for the FO elements within the frequency range { }2 210 ,10ω −∈ rad/sec. 
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4. Simulations and Results 
To show the effectiveness of the proposed methodology a heavily oscillatory and 

a sluggish system has been considered of the structure (2) with parameters 
{ }1, 0.2,5 , 1ol ol

nK ξ ω= = =  respectively [34], excluding the time delay. GA based 

selection of weighting matrices yields the PID controller gains as the optimal state-
feedback gains for the continuous and discrete version of the LQR formulation and has 
been reported in Table I and II respectively along with the minima of the FO cost 
function ( minJ ). It is observed from the Tables I-II that the obtained minima of the cost 

function or minJ  in each cases of integer or fractional order integral is less for the CARE 

based design than the DARE based one since the tracking becomes slightly worse for 
consideration of the sampled data system which is much practical from implementation 
point of view. Here, all simulations have been run for a finite time horizon of 100 
seconds.  

 
Table I: Optimum PID Controller Parameters with CARE 

Process 
Fractional Order of 

Performance Index (Λ) 
Jmin Kp Ki Kd 

Oscillatory 
0.5 14.163 1.366073 0.260574 1.776595 
1.0 96.855 2.291051 0.234846 3.793601 
1.5 842.254 1.802627 0.246183 2.408207 

Sluggish 
0.5 16.366 1.641867 0.172061 0.168591 
1.0 118.156 1.732432 0.16095 0.173052 
1.5 999.961 1.892469 0.252889 0.198146 

 
Table II: Optimum PID Controller Parameters with DARE 

Process 
Fractional Order of 
Performance Index 

(Λ) 
Jmin Kp Ki Kd 

Oscillatory 
0.5 14.85861 0.098233 0.171755 0.198904 
1.0 103.9139 0.097949 0.170926 0.198634 
1.5 940.4062 0.101853 0.175119 0.204367 

Sluggish 
0.5 16.65402 1.351018 0.16446 0.134639 
1.0 120.8922 1.527714 0.14705 0.151819 
1.5 1173.427 1.389176 0.150055 0.138047 

 
Since the performance index itself is different for the designs (due to change of 

the fractional order Λ), hence numerically comparing the values of minJ in Tables 1 and 2 

is not justified. Thus some other criteria must be employed to determine which of these 
performance indices actually gives a better design. This has been done in the later part of 
this section by comparing the cost of control of the designed LQR controllers, from the 
obtained Riccati solutions orP  matrices. Another observation from the Tables 1 and 2 is 
that, as the fractional order of the integrand increases, the numerical value of minJ  

increases. Though the original function within the integral ( ( )2t e t⋅ ) might be same, 
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integration of the function with 1Λ < , would give a lower final value of minJ   than that 

given by 1Λ =  as shown in Fig. 8. For 1Λ > , the values would be higher than that given 
by 1Λ = due to the inherent nature of the memory effect present in the fractional integral 
[29]-[32]. 

The time responses with the optimal PID controllers to control the oscillatory 
process have been compared in Fig. 9 and the associated control signals in Fig. 10. It is 
seen from Fig. 9 that the load disturbance rejection performance of the continuous time 
LQR based PID controllers are better than their discrete versions since the sensitivity 
reduction issues have not been considered in the optimization process. However, the set-
point tracking performances are satisfactory for such a lightly damped open loop process 
with both types of controllers. Also, the discrete LQR based PID controllers give low and 
smoother control action (Fig. 10) compared to the continuous time optimal PID 
controllers, This especially important to make the actuator jerk free. 
 Similar observations can be made from Fig. 11-12, showing the time response and 
control signals corresponding to the sluggish plant. It is evident from Fig. 11 that the 
discrete LQR based PID controllers give dead-beat set-point tracking while the load 
disturbance performances are also comparable with the continuous time counterparts 
unlike that with the oscillatory system. Also, incorporating digital PID controller 
designed with discrete LQR one can achieve small and smooth control signals (Fig. 12) 
which helps to reduce size of the actuator and the associated costs. 

 
Fig. 9. Unit Set-point and load disturbance response for the oscillatory plant.  



17 
 

 
Fig. 10. Control signals of the optimal PID controllers for the oscillatory plant. 

 
Fig. 11. Unit Set-point and load disturbance response for the sluggish plant.  
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Fig. 12. Control signals of the optimal PID controllers for the sluggish plant. 
 

From the above figures it has been seen the time responses and control signals are 
significantly different for the continuous and discrete time LQR based controllers but are 
almost same for variation with the order of fractional order integral. The rationale of 
incorporating the FO of the time domain integral performance index as an extra design 
freedom has been illustrated here. Since, the solution methodology is to search for a set 
of weighting matrices of LQR which produces good time response in terms of low error 
index and controller effort, each controller state feedback gain (discrete PID parameters) 
in Table II is associated with a unique set of weighting matrices satisfying the discrete 
algebraic Riccati equation (18). These GA based selection of weighting matrices would 
produce a unique Riccati solution given be the matrix P which is also a measure of the 
associated cost of control for the LQR. The DARE based Riccati solutions for controlling 
the lightly damped process has been reported in (34)-(36) for varying level of FO of cost 
function (Λ ), representing the same cost function in different resolutions. 

0.5

38.3375 20.8896 34.8736

20.8896 17.4583 19.9732

34.8736 19.9732 40.3691

PΛ=

 
 =  
  

           (34) 

1.0

56.4828 30.7708 51.3929

30.7708 25.9626 29.4921

51.3929 29.4921 59.6989

PΛ=

 
 =  
  

           (35) 

1.5

61.3195 33.6054 55.5945

33.6054 28.8308 32.3811

55.5945 32.3811 64.8493

PΛ=

 
 =  
  

           (36) 
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Also, Riccati solutions associated with the DARE based discrete PID controller gains 
have been reported in (37)-(39) for varying level of Λ . 

0.5

247.25 1065.1 105.0964

1065.1 8733.6 863.2543

105.0964 863.2543 86.0539

PΛ=

 
 =  
  

           (37) 

1.0

42.8740 172.0613 16.9487

172.0613 1789.5 176.0818

16.9487 176.0818 17.4946

PΛ=

 
 =  
  

           (38) 

1.5

40.2110 170.5117 16.8189

170.5117 1578.077 155.6976

16.8189 155.6976 15.4685

PΛ=

 
 =  
  

           (39) 

It is shown in [26] that the infinite time performance index (17) can be calculated from 
the Riccati solution (P matrix) using the initial values of the state variables i.e. 

� ( ) ( ) ( ) ( )
0

(0) (0)T T T

k

J x Px x k Qx k u k Ru k
∞

=

 = = + ∑           (40) 

For a PID controller as in our case, initial values of the state variables (i.e. error, 
its rate and integral) can not be calculated directly to find out the optimal control cost 
(23) since with a step-input excitation the initial value of the error rate will tend to 
infinity and initial value of integral error will tend to zero with the initial value of error 
signal remaining one. To overcome this problem the following methodology has been 
adopted. Here, eigen-values of the GA based differentialP matrices (with DARE) are 
evaluated, corresponding to the gains in Table II. For the oscillatory system with 0.2ξ = , 

( ) [ ]
( ) [ ]

1.0 0.5

1.5 1.0

1.9362 2.9975 41.0457

0.7795 0.9049 11.1710

T

T

eig P P

eig P P

Λ= Λ=

Λ= Λ=

− =

− =
          (41) 

Similarly, for the sluggish system with 5ξ = , 

( ) [ ]
( ) [ ]

0.5 1.0

1.0 1.5

6 88.1 7128.4

0.0601 2.6516 213.4166

T

T

eig P P

eig P P

Λ= Λ=

Λ= Λ=

− =

− =
          (42) 

Clearly, the eigen-values in (41) and (42) are positive which indicates that the 
differential matrices in left hand side of (41) and (42) are positive definite. Now, it is well 
known that for any two Riccati solutions1 2,P P with 1 2P P> , considering initial value of the 

state variables as(0)x , pre-multiplication with (0)Tx and post-multiplication with(0)x  
yields the comparison of the associated LQR costs: 

1 2 1 2(0) (0) (0) (0)T Tx Px x P x J J> ⇒ >            (43) 

Here, the comparison of cost of control for LQR based PID controller design has 
been adopted from other fractional order approaches of guaranteed dominant pole 
placement [35]. From (41)-(43) it is clear that while designing an optimum discrete time 
LQR based digital PID controller to control an oscillatory system, the cost of control 
increases for higher values of the fractional order integral performance index whereas, 
the converse is true for discrete time LQR-PID control of a sluggish system. It can also 
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be seen that the fractional order is essentially an additional degree of freedom in the 
design process and for both the cases the fractional order performance index based 
approach is better than the integer order case. From equation (41), we find that for the 
cost of control 1.5 1.0 0.5(0) (0) (0) (0) (0) (0)T T Tx P x x P x x P xΛ= Λ= Λ=> >  and from equation (42), 

we have 1.5 1.0 0.5(0) (0) (0) (0) (0) (0)T T Tx P x x P x x P xΛ= Λ= Λ=< < . Thus it can be observed that 

in both cases the integer order case lies in between the fractional order cases. For the 
sluggish processes, 1.5Λ =  gives the best design (lowest cost of control) and for 
oscillatory processes 0.5Λ = , gives the best design. Therefore, it is recommended to set 
low values of the FO ( 1Λ < ) for controlling oscillatory processes and high values of FO 
( 1Λ > ) for the control of sluggish processes in the arbitrary order cost function (31).  
 
5. Conclusion 

GA based optimum selection of weighting matrices have been done for the design 
of a discrete time LQR. Conventional PID controller design has been generalized as a 
LQR problem for the control of second order sluggish and oscillatory systems. The cost 
of control for the LQR-PID design has been shown to be dependent on the process 
characteristics, also the damping and the fractional order of the cost function. It is shown 
that the effect of inherent long memory behavior in the fractional differ-integrals can give 
interesting results which can be effectively harnessed to give better controller designs. 
Recommendation for choice of fractional order of cost function in LQR weight selection 
shows that the problem can be applied for the control of wide variety of industrial 
processes. Future scope of research can be directed towards extension of the proposed 
methodology to Linear Quadratic Gaussian (LQG) problems considering noisy 
measurements and disturbances. 
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