115 research outputs found
Reducing the Uptake of Sr90 by Plants on Contaminated Ohio Soils
Author Institution: Department of Agronomy, Ohio Agricultural Experiment Station, Wooster, Ohi
Effect of Strain Relaxation on Magnetotransport properties of epitaxial La_0.7Ca_0.3MnO_3 films
In this paper, we have studied the effect of strain relaxation on
magneto-transport properties of La_0.7Ca_0.3MnO_3 epitaxial films (200 nm
thick), which were deposited by pulsed laser deposition technique under
identical conditions. All the films are epitaxial and have cubic unit cell. The
amount of strain relaxation has been varied by taking three different single
crystal substrates of SrTiO_3, LaAlO_3 and MgO. It has been found that for
thicker films the strain gets relaxed and produces variable amount of disorder
depending on the strength of strain relaxation. The magnitude of lattice
relaxation has been found to be 0.384, 3.057 and 6.411 percent for film
deposited on SrTiO_3, LaAlO_3 and MgO respectively. The films on LaAlO_3 and
SrTiO_3 show higher T_{IM} of 243 K and 217 K respectively as compared to
T_{IM} of 191 K for the film on MgO. Similarly T_C of the films on SrTiO_3 and
LaAlO_3 is sharper and has value of 245 K and 220 K respectively whereas the TC
of the film on MgO is 175 K. Higher degree of relaxation creates more defects
and hence TIM (T_C) of the film on MgO is significantly lower than of SrTiO_3
and LaAlO_3. We have adopted a different approach to correlate the effect of
strain relaxation on magneto-transport properties of LCMO films by evaluating
the resistivity variation through Mott's VRH model. The variable presence of
disorder in these thick films due to lattice relaxation which have been
analyzed through Mott's VRH model provides a strong additional evidence that
the strength of lattice relaxation produces disorder dominantly by increase in
density of defects such as stacking faults, dislocations, etc. which affect the
magneto-transport properties of thick epitaxial La_0.7Ca_0.3MnO_3 films
High magnetic field transport measurement of charge-ordered PrCaMnO strained thin films
We have investigated the magnetic-field-induced phase transition of
charge-ordered (CO) PrCaMnO thin films, deposited onto
(100)-oriented LaAlO and (100)-oriented SrTiO substrates using the
pulsed laser deposition technique, by measuring the transport properties with
magnetic fields up to 22T. The transition to a metallic state is observed on
both substrates by application of a critical magnetic field ( at 60K).
The value of the field required to destroy the charge-ordered insulating state,
lower than the bulk compound, depends on both the substrate and the thickness
of the film. The difference of the critical magnetic field between the films
and the bulk material is explained by the difference of in-plane parameters at
low temperature (below the CO transition). Finally, these results confirm that
the robustness of the CO state, depends mainly on the stress induced by the
difference in the thermal dilatations between the film and the substrate.Comment: 10 pages, 6 figures. To be published in Phys. Rev.
Electronic phase transitions in PrCaMnO epitaxial thin films revealed by resonant soft x-ray scattering
We report the study of magnetic and orbital order in
PrCaMnO epitaxial thin films grown on
(LaAlO)-(SrAlTaO) (LSAT) (011). In
a new experimental approach, the polarization and energy dependence of resonant
soft x-ray scattering are used to reveal significant modifications of the
magnetic order in the film as compared to the bulk, namely (i) a different
magnetic ordering wave vector, (ii) a different magnetic easy axis and (iii) an
additional magnetic reordering transition at low temperatures. These
observations indicate a strong impact of the epitaxial strain on the spin
order, which is mediated by the orbital degrees of freedom and which provides a
promising route to tune the magnetic properties of manganite films. Our results
further demonstrate that resonant soft x-ray scattering is a very suitable
technique to study the magnetism in thin films, to which neutron scattering
cannot easily be applied due to the small sample volume.Comment: 5 pages, 3 figure
Recommended from our members
Bioavailability in soils
The consumption of locally-produced vegetables by humans may be an important exposure pathway for soil contaminants in many urban settings and for agricultural land use. Hence, prediction of metal and metalloid uptake by vegetables from contaminated soils is an important part of the Human Health Risk Assessment procedure. The behaviour of metals (cadmium, chromium, cobalt, copper, mercury, molybdenum, nickel, lead and zinc) and metalloids (arsenic, boron and selenium) in contaminated soils depends to a large extent on the intrinsic charge, valence and speciation of the contaminant ion, and soil properties such as pH, redox status and contents of clay and/or organic matter. However, chemistry and behaviour of the contaminant in soil alone cannot predict soil-to-plant transfer. Root uptake, root selectivity, ion interactions, rhizosphere processes, leaf uptake from the atmosphere, and plant partitioning are important processes that ultimately govern the accumulation ofmetals and metalloids in edible vegetable tissues. Mechanistic models to accurately describe all these processes have not yet been developed, let alone validated under field conditions. Hence, to estimate risks by vegetable consumption, empirical models have been used to correlate concentrations of metals and metalloids in contaminated soils, soil physico-chemical characteristics, and concentrations of elements in vegetable tissues. These models should only be used within the bounds of their calibration, and often need to be re-calibrated or validated using local soil and environmental conditions on a regional or site-specific basis.Mike J. McLaughlin, Erik Smolders, Fien Degryse, and Rene Rietr
- …