27 research outputs found

    Formation of a Millennial Cafe Ministry in Ogden, Utah: An Economically Viable Model

    Get PDF
    Problem Connecting and retaining millennials within established church structure has proven difficult in my context. I have a genuine desire for community and purpose within millennial groups, yet the majority remain removed from traditional church programming and events. A growing disenfranchisement with current church framework has caused many millennials to disengage or seek purpose elsewhere. Method Press Together was formed as a new millennial friendly approach to ministry in Ogden, UT. This raw cold-pressed juicery serves the healthiest organic options from its retail location while providing a space for fellowship, ministry and employment. This uses millenial focus groups and financial data to evaluate millennial engagement and the economic viability of Press Together. The Results Millennials were attracted to Press Together models. They would not hesitate to engage with and recommend Press Together. Most desired additional space for fellowship beyond space offered at the Ogden, Utah location. The production and sale of organic cold-pressed juice products is laborious and expensive. Retail sales alone did not validate an economically viable model given the cost of denominational waga scales and benefits. However, Press Together\u27s non-profit status provided a foundation for philanthropic efforts showing promise for an economically viable model. Conclusions Press Together represents a modern approach to ministry that resonates with millennials. For Press Together to reach its full potential, visionary leadership and skilled management are essential to sustain economic viability and realize ministry potential. With proper oversight and leadership, Press Together represents relevant millennial church planting model that can be strategically reproduced in affluent areas around the world

    Optogenetic perturbations reveal the dynamics of an oculomotor integrator

    Get PDF
    Many neural systems can store short-term information in persistently firing neurons. Such persistent activity is believed to be maintained by recurrent feedback among neurons. This hypothesis has been fleshed out in detail for the oculomotor integrator (OI) for which the so-called “line attractor” network model can explain a large set of observations. Here we show that there is a plethora of such models, distinguished by the relative strength of recurrent excitation and inhibition. In each model, the firing rates of the neurons relax toward the persistent activity states. The dynamics of relaxation can be quite different, however, and depend on the levels of recurrent excitation and inhibition. To identify the correct model, we directly measure these relaxation dynamics by performing optogenetic perturbations in the OI of zebrafish expressing halorhodopsin or channelrhodopsin. We show that instantaneous, inhibitory stimulations of the OI lead to persistent, centripetal eye position changes ipsilateral to the stimulation. Excitatory stimulations similarly cause centripetal eye position changes, yet only contralateral to the stimulation. These results show that the dynamics of the OI are organized around a central attractor state—the null position of the eyes—which stabilizes the system against random perturbations. Our results pose new constraints on the circuit connectivity of the system and provide new insights into the mechanisms underlying persistent activity

    100 kW Nested Hall Thruster System Development

    Get PDF
    Large scale cargo transportation to support human missions to the Moon and Mars will require very high power Solar Electric Propulsion (SEP) systems operating between 200 and 400 kW. Aerojet Rocketdyne's NextSTEP program is developing and demonstrating a 100 kW EP system, the XR-100, using a Nested Hall Thruster (NHT) designed for powers up to 200 kW, a modular power processor and a modular flow controller. The three year program objective is to operate the integrated EP system continuously at 100 kW for 100 h, advancing this very high power Electric Propulsion (EP) system to Technology Readiness Level (TRL) 5. With our University of Michigan, Jet Propulsion Laboratory and NASA Glenn Research Center teammates, Aerojet Rocketdyne has completed the initial phase of the program, including operating the thruster at up to 30 kW to validate the thermal models and developing and operating multiple power processor modules in the required seriesparallel configuration. The current phase includes completing a TRL 4 integrated system test at reduced power to validate all system operating phases. Design upgrades to demonstrate the TRL 5 capabilities are underway. This paper will present the high power XR-100 capabilities, overall program and design approach and the latest test results for the 100 kW EP system demonstration program

    13kW Advanced Electric Propulsion Flight System Development and Qualification

    Get PDF
    The next phase of robotic and human deep space exploration missions is enhanced by high performance, high power solar electric propulsion systems for large-scale science missions and cargo transportation. Aerojet Rocketdynes Advanced Electric Propulsion System (AEPS) program is completing development, qualification and delivery of five flight 13.3kW EP systems to NASA. The flight AEPS includes a magnetically-shielded, long-life Hall thruster, power processing unit (PPU), xenon flow controller (XFC), and intrasystem harnesses. The Hall thruster, originally developed and demonstrated by NASAs Glenn Research Center and the Jet Propulsion Laboratory, operates at input powers up to 12.5kW while providing a specific impulse over 2600s at an input voltage of 600V. The power processor is designed to accommodate an input voltage range of 95 to 140V, consistent with operation beyond the orbit of Mars. The integrated system is continuously throttleable between 3 and 13.3kW. The program has completed the system requirement review; the system, thruster, PPU and XFC preliminary design reviews; development of engineering models, and initial system integration testing. This paper will present the high power AEPS capabilities, overall program and design status and the latest test results for the 13.3kW flight system development and qualification program
    corecore