30 research outputs found

    Attachment styles modulate neural markers of threat and imagery when engaging in self-criticism

    Get PDF
    Attachment styles hold important downstream consequences for mental health through their contribution to the emergence of self-criticism. To date, no work has extended our understanding of the influence of attachment styles on self-criticism at a neurobiological level. Herein we investigate the relationship between self-reported attachment styles and neural markers of self-criticism using fMRI. A correlation network analysis revealed lingual gyrus activation during self-criticism, a marker of visual mental imagery, correlated with amygdala activity (threat response). It also identified that secure attachment positively correlated with lingual gyrus activation, whilst avoidant attachment was negatively correlated with lingual gyrus activation. Further, at greater levels of amygdala response, more securely attached individuals showed greater lingual gyrus activation, and more avoidantly attached individuals showed less lingual gyrus activation. Our data provide the first evidence that attachment mechanisms may modulate threat responses and mental imagery when engaging in self-criticism, which have important clinical and broader social implications.Australian Postgraduate Scholarship

    Enhanced dynamic functional connectivity (whole-brain chronnectome) in chess experts

    Get PDF
    Multidisciplinary approaches have demonstrated that the brain is potentially modulated by the long-term acquisition and practice of specific skills. Chess playing can be considered a paradigm for shaping brain function, with complex interactions among brain networks possibly enhancing cognitive processing. Dynamic network analysis based on resting-state magnetic resonance imaging (rs-fMRI) can be useful to explore the effect of chess playing on whole-brain fluidity/dynamism (the chronnectome). Dynamic connectivity parameters of 18 professional chess players and 20 beginner chess players were evaluated applying spatial independent component analysis (sICA), sliding-time window correlation, and meta-state approaches to rs-fMRI data. Four indexes of meta-state dynamic fluidity were studied: i) the number of distinct meta-states a subject pass through, ii) the number of switches from one meta-state to another, iii) the span of the realized meta-states (the largest distance between two meta-states that subjects occupied), and iv) the total distance travelled in the state space. Professional chess players exhibited an increased dynamic fluidity, expressed as a higher number of occupied meta-states (meta-state numbers, 75.8 ± 7.9 vs 68.8 ± 12.0, p = 0.043 FDR-corrected) and changes from one meta-state to another (meta-state changes, 77.1 ± 7.3 vs 71.2 ± 11.0, p = 0.043 FDR-corrected) than beginner chess players. Furthermore, professional chess players exhibited an increased dynamic range, with increased traveling between successive meta-states (meta-state total distance, 131.7 ± 17.8 vs 108.7 ± 19.7, p = 0.0004 FDR-corrected). Chess playing may induce changes in brain activity through the modulation of the chronnectome. Future studies are warranted to evaluate if these potential effects lead to enhanced cognitive processing and if "gaming" might be used as a treatment in clinical practice
    corecore