18 research outputs found

    Formation of orogenic gold deposits by progressive movement of a fault-fracture mesh through the upper crustal brittle-ductile transition zone

    Get PDF
    Orogenic gold deposits are comprised of complex quartz vein arrays that form as a result of fluid flow along transcrustal fault zones in active orogenic belts. Mineral precipitation in these deposits occurs under variable pressure conditions, but a mechanism explaining how the pressure regimes evolve through time has not previously been proposed. Here we show that extensional quartz veins at the Garrcon deposit in the Abitibi greenstone belt of Canada preserve petrographic characteristics suggesting that the three recognized paragenetic stages formed within different pressure regimes. The first stage involved the growth of interlocking quartz grains competing for space in fractures held open by hydrothermal fluids at supralithostatic pressures. Subsequent fluid flow at fluctuating pressure conditions caused recrystallization of the vein quartz and the precipitation of sulfide minerals through wall-rock sulfidation, with some of the sulfide minerals containing microscopic gold. These pressure fluctuations between supralithostatic to near-hydrostatic conditions resulted in the post-entrapment modification of the fluid inclusion inventory of the quartz. Late fluid flow occurred at near-hydrostatic conditions and resulted in the formation of fluid inclusions that have not been affected by post-entrapment modification as pressure conditions never returned to supralithostatic conditions. This late fluid flow is interpreted to have formed the texturally late, coarse native gold that occurs along quartz grain boundaries and in open spaces. The systematic evolution of the pressure regimes in orogenic gold deposits such as Garrcon can be explained by relative movement of fault-fracture meshes across the base of the upper crustal brittle-ductile transition zone. We conclude that early vein quartz in orogenic deposits is precipitated at near-lithostatic conditions whereas the paragenetically late gold is introduced at distinctly lower pressure

    Comparison of dissolved and particulate arsenic distributions in shallow aquifers of Chakdaha, India, and Araihazar, Bangladesh

    Get PDF
    International audienceBackground The origin of the spatial variability of dissolved As concentrations in shallow aquifers of the Bengal Basin remains poorly understood. To address this, we compare here transects of simultaneously-collected groundwater and aquifer solids perpendicular to the banks of the Hooghly River in Chakdaha, India, and the Old Brahmaputra River in Araihazar, Bangladesh. Results Variations in surface geomorphology mapped by electromagnetic conductivity indicate that permeable sandy soils are associated with underlying aquifers that are moderately reducing to a depth of 10–30 m, as indicated by acid-leachable Fe(II)/Fe ratios 5 mg L-1. More reducing aquifers are typically capped with finer-grained soils. The patterns suggest that vertical recharge through permeable soils is associated with a flux of oxidants on the banks of the Hooghly River and, further inland, in both Chakdaha and Araihazar. Moderately reducing conditions maintained by local recharge are generally associated with low As concentrations in Araihazar, but not systematically so in Chakdaha. Unlike Araihazar, there is also little correspondence in Chakdaha between dissolved As concentrations in groundwater and the P-extractable As content of aquifer particles, averaging 191 ± 122 ug As/L, 1.1 ± 1.5 mg As kg-1 (n = 43) and 108 ± 31 ug As/L, 3.1 ± 6.5 mg As kg-1 (n = 60), respectively. We tentatively attribute these differences to a combination of younger floodplain sediments, and therefore possibly more than one mechanism of As release, as well as less reducing conditions in Chakdaha compared to Araihazar. Conclusion Systematic dating of groundwater and sediment, combined with detailed mapping of the composition of aquifer solids and groundwater, will be needed to identify the various mechanisms underlying the complex distribution of As in aquifers of the Bengal Basin

    Apatite Revisited: The Role of Anisotropy in Apatite Analysis

    No full text

    Development of Lunar Regolith Simulant: From the Macro to the Micro

    No full text
    corecore