447 research outputs found

    StyleID: Identity Disentanglement for Anonymizing Faces

    Full text link
    Privacy of machine learning models is one of the remaining challenges that hinder the broad adoption of Artificial Intelligent (AI). This paper considers this problem in the context of image datasets containing faces. Anonymization of such datasets is becoming increasingly important due to their central role in the training of autonomous cars, for example, and the vast amount of data generated by surveillance systems. While most prior work de-identifies facial images by modifying identity features in pixel space, we instead project the image onto the latent space of a Generative Adversarial Network (GAN) model, find the features that provide the biggest identity disentanglement, and then manipulate these features in latent space, pixel space, or both. The main contribution of the paper is the design of a feature-preserving anonymization framework, StyleID, which protects the individuals' identity, while preserving as many characteristics of the original faces in the image dataset as possible. As part of the contribution, we present a novel disentanglement metric, three complementing disentanglement methods, and new insights into identity disentanglement. StyleID provides tunable privacy, has low computational complexity, and is shown to outperform current state-of-the-art solutions.Comment: Accepted to Privacy Enhancing Technologies Symposium (PETS), July 2023. Will appear in Proceedings on Privacy Enhancing Technologies (PoPETs), volume 1, 2023. 15 pages including references and appendix, 16 figures, 5 table

    Symmetry-Breaking Motility

    Full text link
    Locomotion of bacteria by actin polymerization, and in vitro motion of spherical beads coated with a protein catalyzing polymerization, are examples of active motility. Starting from a simple model of forces locally normal to the surface of a bead, we construct a phenomenological equation for its motion. The singularities at a continuous transition between moving and stationary beads are shown to be related to the symmetries of its shape. Universal features of the phase behavior are calculated analytically and confirmed by simulations. Fluctuations in velocity are shown to be generically non-Maxwellian and correlated to the shape of the bead.Comment: 4 pages, 2 figures, REVTeX; formatting of references correcte

    AnonFACES: Anonymizing Faces Adjusted to Constraints on Efficacy and Security

    Get PDF
    Image data analysis techniques such as facial recognition can threaten individuals’ privacy. Whereas privacy risks often can be reduced by adding noise to the data, this approach reduces the utility of the images. For this reason, image de-identification techniques typically replace directly identifying features (e.g., faces, car number plates) present in the data with synthesized features, while still preserving other non-identifying features. As of today, existing techniques mostly focus on improving the naturalness of the generated synthesized images, without quantifying their impact on privacy. In this paper, we propose the first methodology and system design to quantify, improve, and tune the privacy-utility trade-off, while simultaneously also improving the naturalness of the generated images. The system design is broken down into three components that address separate but complementing challenges. This includes a two-step cluster analysis component to extract low-dimensional feature vectors representing the images (embedding) and to cluster the images into fixed-sized clusters. While the importance of good clustering mostly has been neglected in previous work, we find that our novel approach of using low-dimensional feature vectors can improve the privacy-utility trade-off by better clustering similar images. The use of these embeddings has been found particularly useful when wanting to ensure high naturalness and utility of the synthetically generated images. By combining improved clustering and incorporating StyleGAN, a state-of-the-art Generative Neural Network, into our solution, we produce more realistic synthesized faces than prior works, while also better preserving properties such as age, gender, skin tone, or even emotional expressions. Finally, our iterative tuning method exploits non-linear relations between privacy and utility to identify good privacy-utility trade-offs. We note that an example benefit of these improvements is that our solution allows car manufacturers to train their autonomous vehicles while complying with privacy laws

    Biomarker clusters are differentially associated with longitudinal cognitive decline in late midlife

    Get PDF
    The ability to detect preclinical Alzheimer’s disease is of great importance, as this stage of the Alzheimer’s continuum is believed to provide a key window for intervention and prevention. As Alzheimer’s disease is characterized by multiple pathological changes, a biomarker panel reflecting co-occurring pathology will likely be most useful for early detection. Towards this end, 175 late middle-aged participants (mean age 55.9 ± 5.7 years at first cognitive assessment, 70% female) were recruited from two longitudinally followed cohorts to undergo magnetic resonance imaging and lumbar puncture. Cluster analysis was used to group individuals based on biomarkers of amyloid pathology (cerebrospinal fluid amyloid-β42/amyloid-β40 assay levels), magnetic resonance imaging-derived measures of neurodegeneration/atrophy (cerebrospinal fluid-to-brain volume ratio, and hippocampal volume), neurofibrillary tangles (cerebrospinal fluid phosphorylated tau181 assay levels), and a brain-based marker of vascular risk (total white matter hyperintensity lesion volume). Four biomarker clusters emerged consistent with preclinical features of (i) Alzheimer’s disease; (ii) mixed Alzheimer’s disease and vascular aetiology; (iii) suspected non-Alzheimer’s disease aetiology; and (iv) healthy ageing. Cognitive decline was then analysed between clusters using longitudinal assessments of episodic memory, semantic memory, executive function, and global cognitive function with linear mixed effects modelling. Cluster 1 exhibited a higher intercept and greater rates of decline on tests of episodic memory. Cluster 2 had a lower intercept on a test of semantic memory and both Cluster 2 and Cluster 3 had steeper rates of decline on a test of global cognition. Additional analyses on Cluster 3, which had the smallest hippocampal volume, suggest that its biomarker profile is more likely due to hippocampal vulnerability and not to detectable specific volume loss exceeding the rate of normal ageing. Our results demonstrate that pathology, as indicated by biomarkers, in a preclinical timeframe is related to patterns of longitudinal cognitive decline. Such biomarker patterns may be useful for identifying at-risk populations to recruit for clinical trials

    Are Portable Imaging Intraoperative Radiographs Helpful for Assessing Adequate Acetabular Cup Positioning in Total Hip Arthroplasty?

    Get PDF
    Despite advances in surgical techniques and instrumentation, current intra-operative estimations of acetabular version in total hip arthroplasty are of limited accuracy. In the present study, two experienced orthopedic surgeons compared intra-operatively measured (using portable imaging) anteversions and vertical inclinations of acetabular components with those measured using standardized radiographs post-operatively in 40 patients. Of the all vertical inclinations measured from intra-operative radiographs, 72.5% (n=29) were within ±2°, and 97.5% (n=39) were within ±5° of those determined using post-operative radiographs, and for anteversion, 52.5% (n=21) were within ±2°, and 97.5% (n=39) were within ±5°. Post-operative radiographs demonstrated that 90.0% (n=36) of vertical inclinations and anteversions were within the adequate zone. Obviously, our method has its limitations, but the authors conclude that the method described in this article better allows surgeons to verify acetabular version intra-operatively. In particular, the described method is suitable in cases with a deformed acetabular anatomy and difficult revision surgery

    Integration of decision support systems to improve decision support performance

    Get PDF
    Decision support system (DSS) is a well-established research and development area. Traditional isolated, stand-alone DSS has been recently facing new challenges. In order to improve the performance of DSS to meet the challenges, research has been actively carried out to develop integrated decision support systems (IDSS). This paper reviews the current research efforts with regard to the development of IDSS. The focus of the paper is on the integration aspect for IDSS through multiple perspectives, and the technologies that support this integration. More than 100 papers and software systems are discussed. Current research efforts and the development status of IDSS are explained, compared and classified. In addition, future trends and challenges in integration are outlined. The paper concludes that by addressing integration, better support will be provided to decision makers, with the expectation of both better decisions and improved decision making processes

    Diclofenac Prolongs Repolarization in Ventricular Muscle with Impaired Repolarization Reserve

    Get PDF
    Background: The aim of the present work was to characterize the electrophysiological effects of the non-steroidal anti- inflammatory drug diclofenac and to study the possible proarrhythmic potency of the drug in ventricular muscle. Methods: Ion currents were recorded using voltage clamp technique in canine single ventricular cells and action potentials were obtained from canine ventricular preparations using microelectrodes. The proarrhythmic potency of the drug was investigated in an anaesthetized rabbit proarrhythmia model. Results: Action potentials were slightly lengthened in ventricular muscle but were shortened in Purkinje fibers by diclofenac (20 mM). The maximum upstroke velocity was decreased in both preparations. Larger repolarization prolongation was observed when repolarization reserve was impaired by previous BaCl 2 application. Diclofenac (3 mg/kg) did not prolong while dofetilide (25 mg/kg) significantly lengthened the QT c interval in anaesthetized rabbits. The addition of diclofenac following reduction of repolarization reserve by dofetilide further prolonged QT c . Diclofenac alone did not induce Torsades de Pointes ventricular tachycardia (TdP) while TdP incidence following dofetilide was 20%. However, the combination of diclofenac and dofetilide significantly increased TdP incidence (62%). In single ventricular cells diclofenac (30 mM) decreased the amplitude of rapid (I Kr ) and slow (I Ks ) delayed rectifier currents thereby attenuating repolarization reserve. L-type calcium current (I Ca ) was slightly diminished, but the transient outward (I to ) and inward rectifier (I K1 ) potassium currents were not influenced. Conclusions: Diclofenac at therapeutic concentrations and even at high dose does not prolong repolarization markedly and does not increase the risk of arrhythmia in normal heart. However, high dose diclofenac treatment may lengthen repolarization and enhance proarrhythmic risk in hearts with reduced repolarization reserve

    Comparison of different MRI-based morphometric estimates for defining neurodegeneration across the Alzheimer's disease continuum

    Get PDF
    BACKGROUND: Several neurodegeneration (N) metrics using structural MRI are used for the purpose of Alzheimer's disease (AD)-related staging, including hippocampal volume, global atrophy, and an "AD signature" composite consisting of thickness or volumetric estimates derived from regions impacted early in AD. This study sought to determine if less user-intensive estimates of global atrophy and hippocampal volume were equivalent to a thickness-based AD signature from FreeSurfer for defining N across the AD continuum (i.e., individuals who are amyloid-positive (A+)). // METHODS: Cognitively unimpaired (CU) late middle-aged and older adults, as well as A+ mild cognitive impairment (MCI) and A+ AD dementia individuals, with available CSF and structural MRI scan <1.5 years apart, were selected for the study (n = 325, mean age = 62). First, in a subsample of A+ AD dementia and matched biomarker-negative (i.e., A- and tau tangle pathology (T)-) CU controls (n = 40), we examined ROC characteristics and identified N cut-offs using Youden's J for neurofilament light chain protein (NfL) and each of three MRI-based measures: a thickness-based AD signature from FreeSurfer, hippocampal volume (using FIRST), and a simple estimate of global atrophy (the ratio of intracranial CSF segmented volume to brain tissue volume, using SPM12). Based on the results from the ROC analyses, we then examined the concordance between NfL N positivity and N positivity for each MRI-based metric using Cohen's Kappa in the remaining subsample of 285 individuals. Finally, in the full sample (n = 325), we examined the relationship between the four measures of N and group membership across the AD continuum using Kruskal-Wallis tests and Cliff's deltas. // RESULTS: The three MRI-based metrics and CSF NfL similarly discriminated between the A-T- CU (n = 20) and A+ AD (n = 20) groups (AUCs ≥0.885; ps < 0.001). Using the cut-off values derived from the ROCs to define N positivity, there was weak concordance between NfL and all three MRI-derived metrics of N in the subsample of 285 individuals (Cohen's Kappas ≤0.429). Finally, the three MRI-based measures of N and CSF NfL showed similar associations with AD continuum group (i.e., Kruskal-Wallis ps < 0.001), with relatively larger effect sizes noted when comparing the A-T- CU to the A+ MCI (Cliff's deltas ≥0.741) and A+ AD groups (Cliff's deltas ≥0.810) than to the A+T- CU (Cliff's deltas = 0.112-0.298) and A + T+ CU groups (Cliff's deltas = 0.212-0.731). // CONCLUSIONS: These findings suggest that the three MRI-based morphometric estimates and CSF NfL similarly differentiate individuals across the AD continuum on N status. In many applications, a simple estimate of global atrophy may be preferred as an MRI marker of N across the AD continuum given its methodological robustness and ease of calculation when compared to hippocampal volume or a cortical thickness AD signature

    Differences in Clinical Characteristics between Patients with Non-Erosive Reflux Disease and Erosive Esophagitis in Korea

    Get PDF
    Gastroesophageal reflux disease (GERD) is caused by abnormal reflux of gastric contents into the esophagus. GERD can be divided into two groups, erosive esophagitis and non-erosive reflux disease (NERD). The aim of this study was to compare the clinical characteristics of patients with erosive esophagitis to those with NERD. All participating patients underwent an upper endoscopy during a voluntary health check-up. The NERD group consisted of 500 subjects with classic GERD symptoms in the absence of esophageal mucosal injury during upper endoscopy. The erosive esophagitis group consisted of 292 subjects with superficial esophageal erosions with or without typical symptoms of GERD. Among GERD patients, male gender, high body mass index, high obesity degree, high waist-to-hip ratio, high triglycerides, alcohol intake, smoking and the presence of a hiatal hernia were positively related to the development of erosive esophagitis compared to NERD. In multivariated analysis, male gender, waist-to-hip ratio and the presence of a hiatal hernia were the significant risk factors of erosive esophagitis. We suggest that erosive esophagitis was more closely related to abdominal obesity
    corecore