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ABSTRACT (272 words, max 400 words) 

 
The ability to detect preclinical Alzheimer’s disease has incredible import, as this stage of the 

Alzheimer’s continuum is believed to provide a key window for intervention and prevention. As 

Alzheimer’s disease is characterized by multiple pathological changes, biomarkers for 

simultaneous pathology will likely be most useful for early detection. Towards this end, 175 late 

middle-aged participants (mean age 58.97, SD 5.8; 70% female) were recruited from two 

longitudinally followed cohorts to undergo magnetic resonance imaging and lumbar puncture. 

Cluster analysis then grouped individuals based on biomarkers of amyloid pathology 

(cerebrospinal fluid Aβ42/Aβ40 levels), neurodegeneration (cerebrospinal fluid-to-brain volume 

ratio and hippocampal volume), neurofibrillary tangles (cerebrospinal fluid phosphorylated tau 

181 levels), and a brain-based marker of vascular risk (total white matter hyperintensity lesion 

volume). Clusters were then compared on their cognitive profile using longitudinally measured 

tests of episodic memory, semantic memory, executive function, and global function with linear 

mixed effects modeling. Four clusters emerged consistent with pre-clinical features of 

Alzheimer’s disease, mixed dementia, atrophy, and healthy aging. Clusters demonstrated 

important differences in cognitive decline. Compared to the healthy cluster, all other clusters 

showed increased decline on a test of global functioning. Additionally, the preclinical 

Alzheimer’s dementia-like cluster showed steeper worsening performance on tests of semantic 

memory and executive function; the mixed dementia-like cluster showed steeper worsening 

performance on an executive functioning test; and the atrophy cluster showed steeper worsening 

performance on tests of episodic and semantic memory. Our results demonstrate that pathology, 

as indicated by biomarkers, in a preclinical timeframe is related to patterns of cognitive decline 
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over time. Such biomarker patterns may be could be useful for identifying at-risk populations to 

recruit for clinical trials.  

 

Key words (max 5): preclinical, Alzheimer’s disease, cluster analysis, neuroimaging, 

cerebrospinal fluid 

 

Abbreviations:  

Aβ = amyloid-beta 

APOE4 = apolipoprotein E4 allele 

CSF = cerebrospinal fluid  

FH = family history  

GM = gray matter 

ICV = intracranial volume 

LM = Logical Memory 

LME = linear mixed effects 

LP = lumbar puncture 

MCI = mild cognitive impairment 

MMSE = Mini Mental State Exam 

MRI = magnetic resonance imaging  

NP = neuropsychological 

p-tau = phosphorylated tau 

RAVLT = Rey Auditory Verbal Learning Test 

TMTB = Trailing Making Test B 

WADRC = Wisconsin Alzheimer’s Disease Research Center 

WAIS-DS = Wechsler Adult Intelligence digit symbol 

WM = white matter 

WMH = white matter hyperintensity 

WRAP =  Wisconsin Registry for Alzheimer’s Prevention 
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1 INTRODUCTION 

 

Alzheimer’s disease pathology begins decades before clinical symptoms emerge (Sperling et al. , 

2011, Morris, 2005) and cognitive impairment also begins many years before a diagnosis for 

mild cognitive impairment (MCI) or dementia due to Alzheimer’s disease (Rajan et al. , 2015, 

Howieson et al. , 2008). This long preclinical stage provides a critical window for intervention 

with disease-modifying pharmaceutical or behavioral therapies. However, a reliable, accurate, 

and unbiased way of detecting preclinical Alzheimer’s disease that does not rely on long-term 

trajectory has yet to be determined. Furthermore, although considerable research has been 

dedicated to identifying and validating neuroimaging, fluid, and other biomarkers for various 

stages of Alzheimer’s disease, the individual and combined power of these biomarkers to detect 

preclinical Alzheimer’s disease is, as of now, still not clearly established. Given that amyloid-β 

(Aβ) alone does not always cause cognitive impairment, it is most likely that a combination of 

these factors is responsible for the progressive cognitive decline in Alzheimer’s disease.  

 

A potentially powerful tool is cluster analysis using Alzheimer’s disease biomarkers that can be 

detected during the preclinical stage. Cluster analysis can group individuals based on 

heterogeneity within a single biomarker, or an array of biomarkers; therefore, multiple co-

occurring pathological features can simultaneously be captured in a single clustering, making it a 

particularly promising approach for detecting preclinical Alzheimer’s disease. Biomarker-based 

cluster analysis has been used in cognitively normal elderly and patients with MCI or dementia 

due to Alzheimer’s disease, but it has yet to be investigated for use in identifying preclinical 

Alzheimer’s disease in mid-life.  

 

According to a theoretical model by Sperling et al. (2011), there are three stages of preclinical 

Alzheimer’s disease: 1) asymptomatic amyloidosis, 2) co-occurring amyloidosis and 

neurodegeneration, and 3) co-occuring amyloidosis, neurodegeneration, and subtle cognitive 

decline. However, as noted by Jack et al. (2013) and others, there is a paucity of empirical data 

regarding this important timeframe. The primary goal of this study, therefore, was to seek 
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empirical support for the Sperling et al. (2011) model in a late-midlife cohort. In addition to 

markers of amyloid pathology (Aβ42/Aβ40 levels in cerebrospinal fluid, CSF) and 

neurodegeneration (CSF-to-brain volume ratio and hippocampal volume), we additionally 

include a CSF marker of neurofibrillary tangles (phosphorylated tau 181, p-tau, levels) and a 

magnetic resonance imaging (MRI)-based marker of vascular risk, total white matter 

hyperintensity (WMH) lesion volume. Our hypothesis was that in addition to a healthy aging 

group (biomarker negative), a preclinical Alzheimer’s disease-like group would be identified 

based on an integrative biomarker profile (amyloidosis + neurofibrillary tangle pathology + 

neurodegeneration) and that this group would show evidence of early cognitive decline. Given 

the prevalence of mixed dementia, we further hypothesized that a group of participants would 

present with evidence suggestive of vascular pathology.  

2 MATERIALS AND METHODS 

2.1 Participants 

 

Participants were selected for this study on the basis of participation in one of two large cohorts 

at the University of Wisconsin-Madison including the Wisconsin Registry for Alzheimer’s 

Prevention (WRAP) and the Wisconsin Alzheimer’s Disease Research Center (WADRC), and on 

the basis of having available biomarkers from magnetic resonance imaging and cerebrospinal 

fluid by lumbar puncture. The source cohorts are designed to identify biological and lifestyle risk 

factors associated with development of subsequent clinical Alzheimer’s disease in cohorts 

enriched for Alzheimer’s disease risk factors due to parental family history (FH) of Alzheimer’s 

disease (Koscik et al. , 2014, Sager et al. , 2005, Jonaitis et al. , 2013). The WRAP study consists 

of 1,545 participants (mean age=53.6 years, SD=6.6 at first cognitive assessment), of which 

72.4% have a parental FH of Alzheimer’s disease. Recruitment for the WADRC cohort is 

ongoing. All subjects were between the ages of 45 and 64 at the time of enrollment. For the 300+ 

individuals currently being followed, mean age at enrollment was about 57 years, and 

approximately 2/3 of the cohort have a parental history of AD.  
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N=181 participants were selected from the two cohorts on the basis of having undergone both 

cerebrospinal fluid collection and magnetic resonance imaging. Of this sample, n=6 were 

excluded on the basis of an incomplete MRI sequence (n=1), incomplete CSF assays (n=1), 

having an interval from the MRI to lumbar puncture (LP) greater than one year (n=2, 374 and 

780 days, interval range without these participants is -112 to 117 days), and two WMH outliers 

(n=1, >5 SD from mean) resulting in a sample of N=175. The University of Wisconsin 

Institutional Review Board approved all study procedures, each subject provided signed 

informed consent before participation, and all research was completed in accordance with the 

Helsinki Declaration. 

2.2 MRI collection and calculation of neuroimaging variables 

 

All participants were scanned on a GE 3.0 Tesla MR750 (Waukesha, WI) using an 8 channel 

head coil. T1-weighted, T2-weighted, and FLAIR anatomical scans were acquired as described 

previously (Johnson et al. , 2013, Racine et al. , 2014)(Berman et al 2015 pc vipr ref). T2-

weighted and FLAIR anatomical scans were reviewed by a neuroradiologist (H.A.R.) for 

exclusionary abnormalities. The T1-weighted volume was segmented into tissue classes (CSF; 

gray matter, GM; and white matter, WM) using the segmentation tool in SPM12 

(www.fil.ion.ucl.ac.uk/spm). CSF-to-brain volume ratio was calculated as the tissue volume ratio 

of CSF/(GM+WM). Hippocampal volume was calculating using FSL-FIRST, a model-based 

segmentation/registration tool (Patenaude et al. , 2011) and corrected for intracranial volume 

(ICV) calculated in SPM12. Total white matter hyperintensity lesion volume was measured 

using the SPSS Lesion Segmentation Tool (Schmidt et al. , 2012). 

2.3 CSF collection and quantification  

 

CSF was collected as described previously (Starks et al. , 2015) (Racine et al 2015 DADM; 

Berman et al 2015 pc vipr ref). CSF collection and processing methods were identical across 

studies. P-tau181 was quantified with a sandwich ELISA (Phospho-Tau[181P], Fujirebio Europe, 

Ghent, Belgium). For the Aβ42/Aβ40 ratio, CSF levels of Aβ42 and Aβ40 (a less amyloidogenic Aβ 

fragment as compared to Aβ42) were quantified by electrochemiluminescence using an Aβ triplex 

assay (MSD Human Aβ peptide Ultra-Sensitive Kit, Meso Scale Discovery, Gaithersburg, MD).  



Racine – Detecting preclinical Alzheimer’s disease 

 8

2.4 Cognitive data collection 

 

Longitudinal cognitive data is collected for both the WRAP and WADRC studies. WRAP study 

participants come in for follow-up cognitive testing approximately four years post their initial 

visit and every two years thereafter. WADRC participants come in for annual cognitive testing. 

At each wave of testing, participants complete a comprehensive neuropsychological (NP) battery 

consisting of measures that span traditional cognitive domains of memory, attention, executive 

function, language, and visuospatial ability.  

 

We selected tests that were consistent across both studies that were sensitive to domains of 

episodic memory (total trials 1-5 and delayed recall for Rey Auditory Verbal Learning Test, 

RAVLT; immediate and delayed recall for Logical Memory, LM), semantic memory (Boston 

Naming, Animal Naming), executive function (Trail Making Test B, TMTB; Wechsler Adult 

Intelligence digit symbol, WAIS-DS), and global function (Mini Mental State Exam, MMSE). 

Table 1 summarizes the longitudinal cognitive data for each test across the five waves. RAVLT, 

Boston Naming, and TMTB, started at wave one for both WRAP and WADRC; LM, WAIS-DS, 

and MMSE started at wave two for WRAP and wave one for WADRC; and Animal Naming 

started at wave three for WRAP and wave one for WADRC. Therefore, for analyses and Table 1 

for WRAP participants only, NP testing 2 or NP testing 3 is called NP testing 1 for tests initiated 

at waves two and three, respectively. WADRC participants received only story one for LM and 

the 30-item test for Boston Naming; their scores were doubled to maintain continuity between 

cohorts. Additionally, the protocol for the NP battery underwent revisions during the course of 

data collection for WADRC subjects. As a result, some WADRC subjects were not administered 

LM, Animal Naming, WAIS-DS, and MMSE for the second neuropsychological visit. The 

structurally missing data do not affect the validity of the statistical tests performed, as LME is 

robust to unbalanced designs, missing data, and unequally spaced data points.  

 

Table 1. Summary of longitudinal cognitive data (n, mean (SD), range) 

NP test NP testing 1 NP testing 2 NP testing 3 NP testing 4 NP testing 5 

Episodic memory 
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RAVLT 

Total Trials 

1-5 

n=175 

50.98 (8.15) 

32-71 

n=170 

52.76 (8.99) 

28-71 

n=166 

52.40 (8.91) 

24-72 

n=113 

53.32 (8.46) 

37-71 

n=39 

53.00 (8.89) 

37-71 

RAVLT 

delayed 

n=174 

10.30 (2.86) 

2-15 

n=170 

10.94 (2.84) 

0-15 

n=166 

10.77 (2.90) 

0-15 

n=113 

11.00 (2.49) 

4-15 

n=39 

10.49 (3.03) 

4-15 

*LM 

immediate 

n=174 

29.17 (6.47) 

14-46 

n=110 

28.77 (5.76) 

13-42 

n=146 

29.52 (6.7) 

10-42 

n=67 

31.76 (5.64) 

18-44 

n=14 

31.86 (7.82) 

18-46 

*LM 

delayed 

n=174 

26.48 (7.27) 

1-46 

n=110 

26.00 (6.93) 

0-43 

n=146 

27.77 (6.77) 

4-42 

n=67 

30.03 (6.56) 

18-48 

n=14 

31.29 (7.87) 

18-46 

Semantic memory 

*Animal 

naming 

n=151 

23.19 (5.60) 

9-41 

n=89 

23.06 (5.39) 

12-34 

n=100 

23.36 (4.99) 

13-37 

n=42 

25.33 (4.49) 

16-34 

n=14 

24.21 (4.54) 

15-32 

Boston 

naming 

n=173 

57.20 (2.69) 

46-60 

n=170 

57.30 (2.60) 

47-60 

n=164 

57.70 (2.48) 

30-60 

n=113 

57.91 (2.33) 

44-60 

n=39 

57.54 (2.32) 

52-60 

Executive function 

TMT B 

n=174 

59.44 (19.62) 

23-138 

n=170 

56.56 (18.46) 

14-144 

n=166 

55.79 (18.86) 

26-125 

n=113 

60.66 (24.43) 

23-182 

n=39 

62.15 (23.27) 

38-152 

*WAIS-DS 

n=174 

58.57 (10.46) 

5-82 

n=109 

58.24 (10.17) 

33-83 

n=145 

58.34 (11.14) 

31-89 

n=67 

57.79 (11.23) 

33-89 

n=14 

62.71 (9.37) 

49-86 

Global function 

*MMSE 

n=174 

29.44 (.77) 

27-30 

n=109 

29.28 (1.13) 

24-30 

n=146 

29.44 (.86) 

27-30 

n=67 

29.25 (1.11) 

25-30 

n=14 

29.21 (.98) 

27-30 
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N, mean (SD), range; N=1 participants had a 6th NP visit (data not shown); *For WRAP 

participants only, NP testing 1 is Wave 2 for LM, WAIS-DS, and MMSE, and NP testing 1 is 

Wave 3 for Animal Naming; same NP tests were not administered to some of the WADRC 

participants at NP testing 2. RAVLT = Rey Auditory Verbal Learning Test; LM = Logical 

Memory; TMT B = Trail Making Test B; WAIS-DS = Wechsler Adult Intelligence Digit 

Symbol; MMSE = Mini Mental State Exam.  

2.5 Clustering 

 

Clustering broadly refers to the process of grouping a set of individuals into clusters based on 

how similar they are on certain criteria. Cluster analysis should classify individuals so that 

individuals within a cluster are as similar to each other as possible and clusters are as different 

from each other as possible. 

 

Variables for clustering were CSF Aβ42/Aβ40, CSF p-tau, CSF-to-brain volume ratio, ICV-

corrected hippocampal volume, and WMH total lesion volume. MRI data is also collected 

longitudinally in WRAP and WADRC, therefore, the three neuroimaging variables were selected 

for the MRI scan collected closest to the LP (mean=2.62 days, SD 20.56, range=-112 to 117). 

Because these variables are known to change with age, all variables were corrected for age by 

saving the unstandardized residual. Hippocampal volume was additionally corrected for ICV. 

The unstandardized residuals were then transformed into z-scores before being entered into the 

clustering algorithm. To ensure that there was not a high degree of collinearity among the 

clustering variables, which could lead to specific aspects being overrepresented in the clustering 

solution, bivariate correlations were run for all clustering variables using both Pearson’s 

correlation coefficient and Spearman’s rho to test for parametric and nonparametric 

relationships. A threshold of .7 was chosen to signify high collinearity.    

 

Participants were grouped using agglomerative hierarchical clustering with Ward’s method of 

minimum variance and the squared Euclidean distance metric. Wards method joins two clusters 

to produce the smallest increases in the pooled within-cluster variation. The Euclidean distance is 

one of the most common and straightforward ways of computing distance between objects and 
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refers to the geometric distance in multidimensional space. Squaring the Euclidean distance 

places greater emphasis on objects that are further apart and is also commonly used.  

2.6 Statistical Analyses 

2.6.1 ANOVA: cluster characteristics 

 

Clusters were compared by ANOVA with Statistical Package for the Social Sciences (SPSS) 22 

on the five clustering variables, demographics, and clinical characteristics that may be related to 

dementia due to Alzheimer’s disease or vascular dementia. For clustering variables, raw values 

rather than the z-scores were compared, and no covariates were included with the exception of 

hippocampal volume for which ICV was included. Demographic variables assessed included age 

at LP, sex, years of education, parental FH, and whether a participant carries at least one copy of 

the apolipoprotein E4 allele (APOE4). Clinical characteristics included blood pressure (systolic 

and diastolic), total cholesterol, non-HDL cholesterol (total cholesterol minus LDL), fasting 

glucose, body mass index, and ASCVD risk score, a formula developed by the American College 

of Cardiology and the American Heart Association to estimate risk of an atherosclerotic 

cardiovascular disease event in the next ten years (Goff et al. , 2014). Because clinical 

characteristics are known to vary by age and sex, they were included as covariates for analyses 

of clinical data, in addition to the interval (months) between the LP and the medical 

examination/lab draw date.  

 

2.6.2 Linear mixed effects: cognitive decline 

 

Cognitive decline was measured by slope in linear mixed effects (LME) ANCOVAs in SPSS 

with cluster as the grouping variable and longitudinally measured NP scores as the dependent 

variables. Separate models were run for each NP test of interest (RAVLT total trials 1-5 and 

delayed, LM immediate and delayed, Boston Naming, Animal Naming, WAIS-DB, TMTB, and 

MMSE). First, unconditional means models adjusting for random effects were examined using 

unstructured covariance structure to determine significant random effects. Next, conditional 

ANCOVA models were run with cluster as the grouping variable which included significant 

random effects plus fixed effects of sex, years of education, APOE4, interval from the closest 
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MRI to the LP (days), interval from the LP to the first NP assessment (months), cohort (binary: 

WRAP or WADRC), time (age at each visit), cluster, and the interaction of time x cluster 

(slope).  

 

Cluster 4, which was negative for all biomarkers (Fig 1), was used as the comparison group for 

LME analyses. In cases where one of the three biomarker-positive clusters was significantly 

different from cluster 4, post hoc comparisons were performed comparing that cluster to the 

other 2 clusters; results are reported only in cases where the post hoc tests were significant.  

3 RESULTS 

3.1 Clustering variables 

 

No pairs of clustering variables exceeded either a Pearson’s correlation coefficient or 

Spearman’s rho of greater than .3. Four clusters emerged (Fig. 1 and supplementary Fig. 1). The 

first cluster (n=22) demonstrated elevated CSF p-tau and low CSF Aβ42/Aβ40, consistent with 

an Alzheimer’s-like profile. The second cluster (n=32) showed evidence of elevated CSF-to-

brain volume ratio and WMH and low Aβ42/Aβ40, suggestive of vascular/mixed pre-dementia. 

The third cluster (n=45) had elevated atrophy and the smallest hippocampal volume, suggestive 

of a hippocampus-specific disease, lesion, or vulnerability. The fourth and largest cluster (n=76) 

was negative for all five biomarkers, suggestive of healthy aging.   

 

Figure 1.  
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Figure 1. Results of hierarchical cluster analysis with Alzheimer’s disease biomarkers. Y-axis: z-scores of the five 

age-corrected clustering variables: CSF Aβ42/Aβ40 (purple), CSF p-tau (yellow), CSF-to-brain volume ratio [[need 

to change figure legend from “atrophy”]] defined as the tissue volumes of CSF/GM+WM (blue), ICV-corrected 

hippocampal volume (green), and WMH total lesion volume (beige). Error bars represent 95% confidence intervals. 

 

Supplementary Figure 1.  
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Supplementary Figure 1. Box plots depict each clustering variable individually by cluster. The bar graph (bottom 

right) depicts all 5 clustering variables simultaneously by cluster. Error bars represent 95% confidence intervals.  

 

ANOVA supported the visual characterization of the clusters. Cluster 1 had significantly 

elevated p-tau compared to all other clusters (p<.001) and cluster 2 had significantly lower p-tau 

compared to all other clusters (p<.05). Cluster 1 also had the lowest CSF Aβ42/Aβ40 compared 

to all other clusters (p<.001), and cluster 2 had significantly lower Aβ42/Aβ40 compared to 

clusters 3 and 4 (p<.001). Both clusters 2 and 3 had significantly greater CSF-to-brain volume 

ratio compared to cluster 4 (p<.001). Cluster 3 had significantly smaller hippocampal volume 

compared to all other clusters (p<.05), and cluster 4 had significantly greater hippocampal 

volume compared to all other clusters (p<.05). Cluster 2 had significantly greater WMH total 

lesion volume compared to all other clusters (p<.001). 

 

Table X. Cluster comparisons on clustering, demographic, and clinical variables 

Comparison variable Cluster 1 

n=22 

Cluster 2 

N=32 

Cluster 3 

N=45 

Cluster 4 

N=76 

p-

value 

Clustering variable 

CSF Aβ42/Aβ40 .065 (.015) .094 (.018) .107 (.012) .110 (.014) p<.001 

CSF p-tau 58.23 (15.3) 32.94 (9.8) 39.13 (10.7) 42.01 (13.1) p<.001 

CSF-to-brain volume ratio .291 (.057) .319 (.054) .314 (.076) .269 (.048) p<.001 

Hippocampal volume* 7646 (611) 7959 (873) 7134 (634) 8349 (732) p<.001 

WMH 13.58 (5.8) 25.76 (11.0) 14.61 (6.4) 15.35 (6.7) p<.001 

Demographic variable 

Age (years) 61.77 (4.9) 57.22 (7.3) 59.46 (5.4) 58.68 (5.3) p=.035 

Sex (% female) .727 (.46) .688 (.47) .614 (.49) .737 (.44) p=.554 

Education (years) 17.05 (1.9) 16.09 (2.7) 16.18 (2.8) 16.24 (2.4) p=.510 

APOE4 carrier (%) .682 (.48) .500 (.51) .364 (.49) .329 (.47) p=.016 

Parental FH .682 (.48) .813 (.40) .773 (.42) .842 (.37) p=.399 

Clinical variable** 

ACVD (%) 6.39 (1.9) 5.71 (1.61) 6.47 (1.34) 6.09 (1.03) p=.595 

Systolic blood pressure 121.73 126.71 123.71 124.16 p=.303 
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(mmHg) (3.12) (2.63) (2.18) (1.68) 

Diastolic blood pressure 

(mmHg) 
71.05 (1.87) 76.29 (1.57) 73.98 (1.30) 72.93 (1.00) p=.136 

Total Cholesterol (mg/dL) 
204.09 

(7.61) 

196.19 

(6.41) 

196.73 

(5.32) 

201.05 

(4.09) 
p=.839 

4 Non-HDL Cholesterol 

(mg/dL) 

143.05 

(29.36) 

138.32 

(32.25) 

135.44 

(45.86) 

139.09 

(32.10) 
p=.881 

Fasting Glucose (mg/dL) 95.05 (3.10) 99.83 (2.70) 97.50 (2.19) 93.89 (1.73) p=.186 

Body mass index (kg/m2) 27.03 (1.11) 29.18 (0.94) 27.52 (0.78) 28.88 (0.60) p=.108 

APOE4=apolipoprotein E4 allele; FH=family history. P-value is for omnibus ANOVA unless 

otherwise indicated; *ANCOVA controlled for ICV; **ANCOVA controlling for age, sex, 

interval between LP and medical examination 

4.1 Demographics 

 

Cluster 1 was significantly older than clusters 4 and 2 (p<.05) and had significantly more APOE4 

carriers than clusters 3 and 4 (p<.05). Clusters did not differ on sex, years of education, or 

parental FH.  

4.2 Clinical characteristics  

 

The ANOVA or ANCOVA omnibus tests were not significant for any clinical characteristics 

examined.  

4.3 Cognitive decline 

 

LME results of cognitive change over time are displayed in Figure 2. Cluster 1 had a steeper 

slope for Animal Naming (p=.003, β= -0.57); post hoc comparisons neared but did not reach 

significance compared to cluster 2 (p=.053) or cluster 3 (p=.089). Cluster 1 had a significantly 

steeper slope on WAIS-DS (p=.016, β=-0.64); post hoc comparisons were significant compared 

to cluster 3 (p=.019) but not cluster 2 (p=.146). Cluster 2 had a steeper slope for TMT B (p=.005, 

β= 0.99); post hoc comparisons were significantly different compared to cluster 1 (p=.024) and 
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cluster 3 (p<.001). Cluster 3 had a steeper slope than cluster 1 for LM immediate (p=.018, β=-

0.36), LM delayed (p=.017, β=-0.41), and Boston Naming (p=.004, β=-0.15). Cluster 1 (p=.008, 

β=-0.08) and cluster 2 (p=.016, β=-0.05), but not cluster 3 (p=.066, β=-0.04) had significantly 

steeper slopes than cluster 1 on MMSE. Surprisingly, clusters 1-3 did not differ in slopes for 

RAVLT immediate or delayed compared to cluster 4, despite observable decline for clusters 1 

and 2. Only results for Animal Naming, TMTB, and Boston Naming survive a significance 

threshold corrected for multiple comparisons using a Bonferroni corrected p-value for nine 

cognitive tests (p=.05/9=.006). 

 

Figure 2. Cognitive change over time by cluster 

 
Figure 2. Cognitive change over time corrected for all other variables in the model for cluster 1 (purple, preclinical 

AD-like), cluster 2 (red, mixed pre-dementia), cluster 3 (blue, atrophy), and cluster 4 (gray, healthy aging). X-axis: 

age in years. Y-axis: raw cognitive test scores. RAVLT = Rey Auditory Verbal Learning Test; LM = Logical 

Memory; TMT B = Trail Making Test B; WAIS = Wechsler Adult Intelligence; MMSE = Mini Mental State Exam. 

5 DISCUSSION 
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This study provided empirical support for the use of cluster analysis to detect heterogeneity and 

potentially identify a subgroup with preclinical Alzheimer’s disease in late mid-life. We 

identified four groups, two of which were consistent with clinical profiles for preclinical 

Alzheimer’s disease and preclinical mixed dementia. The third cluster showed evidence of 

hippocampal injury or intrinsic brain vulnerability, and the fourth cluster seems to represent 

normally aging individuals. All of the biomarker-positive clusters showed cognitive decline in at 

least one cognitive domain compared to the healthy cluster. The preclinical Alzheimer’s disease-

like cluster (cluster 1) showed declining performance in semantic memory and executive 

function, and had the steepest declining slope on global functioning of the three biomarker-

positive clusters; the preclinical mixed dementia-like cluster (cluster 2) showed decline in 

executive and global function; and the atrophy cluster (cluster 3) showed decline in memory 

broadly (delayed, immediate, and semantic) and global function. Consistent with an 

Alzheimer’s-like profile, cluster 1 was older and had greater incidence of APOE4, but clusters 

did not differ on any other demographic or clinical variables examined.  

 

Preclinical Alzheimer’s disease is often simply characterized as “Aβ+” or “Aβ-” or by long-term 

clinical trajectories—both techniques have their limitations. Artificial cut-offs and 

dichotomization ignore potentially important variability in a continuous variable. Additionally, 

while Aβ is an important biomarker, it does not capture the multifaceted nature of Alzheimer’s 

disease, which is characterized by numerous pathological changes besides Aβ plaques. Long-

term trajectories are helpful to researchers trying to understand preclinical Alzheimer’s disease, 

but are not pertinent to the ultimate goal of detecting preclinical Alzheimer’s disease during that 

stage so that interventions can be initiated. In contrast, cluster analysis provides an unbiased way 

to characterize multimodal data that captures multiple pathological characteristics 

simultaneously and can be used throughout the course of the Alzheimer’s disease continuum. 

Here we provided evidence for the use of cluster analysis to identify individuals who appear to 

be in a preclinical stage of Alzheimer’s disease in late mid-life, even preceding mild cognitive 

impairment.   

 

Using biomarkers to cluster groups along the Alzheimer’s disease trajectory has been done 

previously in cohorts of normal elderly (Skillback et al. , 2013, Pike et al. , 2011, Nettiksimmons 
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et al. , 2013, Nettiksimmons et al. , 2010), patients with mild cognitive impairment 

(Nettiksimmons et al. , 2014, Escudero et al. , 2011), and patients with dementia (Wallin et al. , 

2010, van der Vlies et al. , 2009, Noh et al. , 2014, Vemuri et al. , 2011). For instance, two 

studies in patients with mild cognitive impairment showed that clusters with biomarker profiles 

consistent with Alzheimer’s disease were more likely to progress to dementia due to Alzheimer’s 

disease, illustrating the potential utility for cluster analysis to predict disease progression 

(Nettiksimmons et al. , 2014, Escudero et al. , 2011). While clustering has demonstrated utility 

in elderly and cognitively impaired cohorts, it had yet to be validated during the preclinical 

Alzheimer’s disease stage in late mid-life. This study fills this gap by using cluster-based 

analysis with neuroimaging and CSF biomarkers in a late-middle aged risk-enriched cohort. 

Because this cohort is still relatively young, cognitive decline rather than clinical endpoints were 

used to evaluate trajectory.  

 

Cluster 1 was most consistent with an Alzheimer’s disease-like biomarker profile (decreased 

CSF Aβ42/Aβ40, increased CSF p-tau). Significant neurodegeneration measured by gross CSF-

to-brain volume ratio and hippocampal volume was notably absent, suggesting that this cluster is 

representative of an early stage of the Alzheimer’s disease continuum preceding frank neuronal 

death and atrophy. Although the cluster did not show expected declines on tests of episodic 

memory (RAVLT and LM), it showed significant declines on tests of semantic memory, 

executive function, and global function. Our results are largely consistent with a meta-analysis 

on 47 studies involving 9,097 controls and 1,207 preclinical Alzheimer’s disease cases that 

found that preclinical Alzheimer’s disease (including mild cognitive impairment) is characterized 

by marked deficits in global cognitive ability, episodic memory, perceptual speed, and executive 

functioning; smaller deficits in verbal ability, visuospatial skill, and attention; and no preclinical 

impairment in primary memory (Backman et al. , 2005). Furthermore, both Animal Naming and 

MMSE are commonly used clinical techniques that have high accuracy for diagnosing dementia. 

Animal Naming is a type of category fluency test where a cut-off of less than 15 is suggestive of 

cognitive impairment. Canning et al. (2004) found that Animal Naming has .88 sensitivity and 

.96 specificity in discriminating healthy controls from patients with dementia due to Alzheimer’s 

disease. Another study found that steeper declines on Animal Naming distinguished cognitively 

unimpaired individuals from those with preclinical Alzheimer’s disease (mean age 80.5 years), 
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defined as initially having a CDR<1 at start of the study but having a dementia due to 

Alzheimer’s disease diagnosis by follow-up (range 2.3-5.9 years) (Clark et al. , 2009).  Similarly, 

a different longitudinal study found that individuals who developed Alzheimer’s disease 

exhibited significant within-group decline in total MMSE score (Small et al. , 2000). Change in 

MMSE may not be as informative of disease progression once an individual has already 

developed dementia due to Alzheimer’s disease (Clark et al. , 1999).  

 

It is intriguing that the preclinical Alzheimer’s disease-like cluster showed deficits in semantic 

but not episodic memory as deficits in episodic memory are consistently found in various stages 

of Alzheimer’s disease (Backman et al. , 2001, Grober et al. , 2008) and is postulated to reflect 

pathological changes in the medial-temporal lobe, which occur early in the disease (Collie and 

Maruff, 2000). A potential explanation for our findings could lie in the fact that cluster 1 did not 

show marked hippocampal atrophy. Similar to our findings, a study using ADNI normal controls 

(mean age 76 years) found that a cluster with CSF and MRI biomarkers consistent with ADNI 

patients with MCI or Alzheimer’s disease showed worsening performance on the Alzheimer’s 

Disease Assessment Scale-cognitive subsection but not the RAVLT (Nettiksimmons et al. , 

2010). Additionally, they found that hippocampal volume from this cluster was only .19 standard 

deviation units from the overall normal control mean while the MCI and Alzheimer’s disease 

groups were 1.11 and 1.79 standard deviation units from the mean, respectively. It’s been 

suggested that episodic memory primarily depends on the hippocampus while semantic memory 

predominantly depends on the perirhinal and entorhinal cortices (Vargha-Khadem et al. , 1997). 

Interestingly, the first cortical tau lesions also appear in the transentorhinal cortex (Braak and 

Del Tredici, 2015). One theory, therefore, is that tangle pathology could be associated with 

semantic memory deficits in the earliest stages of Alzheimer’s disease. Our results showing 

semantic deficits in a late middle-aged group with tangle pathology (indicated by elevated CSF 

p-tau) but not hippocampal atrophy are consistent with this theory. It will be important to 

continue to follow this group longitudinally to see whether hippocampal atrophy and deficits in 

episodic memory emerge, and whether they are temporally related.  

 

Based on the Sperling et al. (2011) model, it would be expected that individuals in the preclinical 

Alzheimer’s disease-like cluster would represent individuals spanning the three stages of 
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preclinical disease. Therefore, to further qualitatively assess heterogeneity within this cluster, we 

made spaghetti plots for individuals in cluster 1 for two cognitive tests (Animal Naming and 

WAIS-DS) and the neurodegenerative clustering variables (CSF-to-brain volume ratio and ICV-

corrected hippocampal volume) (Supplementary Fig. 1). Of the 22 participants in cluster 1, n=15 

had at least two time points of MRI data, n=9 had three time points, and n=5 had four time 

points. The vast majority of individuals in this cluster appear to show declining performance on 

WAIS-DS and increasing CSF-to-brain volume ratio, and about half of the individuals with more 

than two time points show decline on Animal Naming; but the story for hippocampal volume is 

much less clear. There appears to be some evidence of multiple preclinical Alzheimer’s disease 

stages within this single cluster, but further studies with much larger sample sizes will be needed 

to quantitatively parse out this preclinical staging further.  

 

Supplementary Figure 2.  
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Supplementary Figure 2. Spaghetti plots for cluster 1. For each panel, y-axis: cognitive or MRI variables; x-

axis=age in years. WAIS= Wechsler Adult Intelligence; ICV=intracranial volume; CSF-to-brain volume ratio=tissue 

volume ratio of cerebrospinal fluid to gray matter plus white matter.  

 

Cluster 2’s biomarker profile (elevated WMH total lesion volume and CSF-to-brain volume 

ratio, decreased CSF Aβ42/Aβ40) is consistent with preclinical mixed dementia due to vascular 

dementia and dementia due to Alzheimer’s disease. WMH are visible on T2-weighted fluid 

attenuated inversion recovery magnetic resonance imaging and are thought to have a vascular 

origin, increase with age, and are elevated in Alzheimer’s disease (Alosco et al. , 2013, Casado 

Naranjo et al. , 2015, Provenzano et al. , 2013, Wen et al. , 2009, Young et al. , 2008). A 2010 

autopsy study found almost half of the brains of clinically diagnosed Alzheimer’s disease 

patients harbored mixed pathology, the most common of which were infarcts, and that infarcts 

increased the likelihood of cognitive impairment and dementia (Schneider and Bennett, 2010). 

White matter infarctions are postulated to be due to hypoperfusion of the white matter as they are 
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accompanied by vascular stenosis and signs of cardiovascular disease with hypotension (Brun 

and Englund, 1986). White matter lesions are also seen in non-demented controls (Scheltens et 

al. , 1995), suggesting that these lesions are more related to cardiovascular conditions than 

specific Alzheimer’s disease pathology. However, it is unknown whether vascular brain lesions 

are co-occurring pathologies which contribute to cognitive impairment independent of amyloid 

and tau pathology, whether vascular lesions incur greater vulnerability which make the brain 

more susceptible to Alzheimer’s disease pathology, or whether vascular and Alzheimer’s disease 

pathology directly interact to accelerate the Alzheimer’s disease cascade. Longitudinal 

evaluation of individuals in this cluster may provide greater understanding of early co-occurring 

vascular and amyloid pathology.  

 

Cluster 2’s cognitive profile is also consistent with preclinical mixed dementia. Previous studies 

have demonstrated a relationship between vascular pathology and executive function, 

particularly for attention/speed tasks (Moser et al. , 2001), even in non-demented patients 

compared to older healthy controls (Kramer et al. , 2002). Similarly, a study of 349 WRAP 

participants found that WMH were associated with lower cognitive speed and flexibility (Birdsill 

et al. , 2014). Another study found patients with greater WMH and atrophy also exhibit greater 

cognitive decline than subjects with less vascular pathology (Kooistra et al. , 2014) and that 

brain volume atrophy must be accompanied by infarct pathology to impair executive functioning 

(Muller et al. , 2011). Our finding that a group of subjects with elevated CSF-to-brain volume 

ratio, WMH, and decreased CSF Aβ42 demonstrate worsening performance on TMTB is 

consistent with a link between vascular pathology and executive function, with greater decline 

associated with mixed pathology and atrophy. In contrast to our findings, a study of ADNI 

normal controls found that a cluster characterized by substantial brain atrophy and white matter 

hyperintensities (mean age 76.7 years) did not show decline on six tests of executive function, 

including Trails B, but did have significantly higher body mass index, Hachinksi score, 

creatinine levels, triglycerides, and blood glucose (Nettiksimmons et al. , 2013). Differences 

between their findings and ours could be due to cohort age differences (cluster 2 is on average 

almost 20 years younger than their suspected vascular cluster) and unlike the Nettiksimmons et 

al. (2013) suspected vascular cluster, cluster 2 additionally demonstrated decreased CSF 

Aβ42/Aβ40.  
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Cluster 3 presented with increased CSF-to-brain volume ratio and the smallest ICV-corrected 

hippocampal volume. As would be hypothesized given the hippocampus’s involvement in 

memory (Collie and Maruff, 2000), this cluster showed impairments across the memory 

spectrum on tests of delayed, immediate, and semantic memory. The significantly smaller 

hippocampal volume in this cluster could be indicative of a hippocampus-specific impairment 

like hippocampal sclerosis or inherent brain vulnerability. In order to shed light on this question, 

we performed a supplementary LME analysis using longitudinal hippocampal volumes and fixed 

effects of sex, years of education, APOE4, cohort, ICV at each MRI, cluster, time (age at each 

MRI), and time*cluster, as well as an LME model for cluster 3 individuals only. Longitudinal 

MRI data was limited (n=14 had 2 time points of MRI data and n=12 at three time points), so 

these results should be interpreted with some caution. We found that cluster 3 had a significantly 

smaller intercept than the other three clusters and significant decline over time compared to a 

slope of 0, but did not differ in slopes compared to the other three clusters (Supplementary Fig. 

3). These findings suggest the observed cognitive profile for cluster 3 is more likely due to 

hippocampal vulnerability and commensurate age-related atrophy rather than a detectable 

hippocampal volume loss. However, only longitudinal clinical outcomes can rule out the latter 

possibility.  

 

Supplementary Figure 3.  
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Supplementary Figure 3. Hippocampal volume change over time corrected for all other variables in the model for 

cluster 1 (purple, preclinical AD-like), cluster 2 (red, mixed pre-dementia), cluster 3 (blue, atrophy), and cluster 4 

(gray, healthy aging). X-axis: age in years. Y-axis: hippocampal volume (mL). 

 

There are several limitations of this study. First, CSF analyte levels are only an indirect measure 

of pathology, however, it is a common clinical and research technique and the CSF measures of 

interest (Aβ42/Aβ40 and p-tau) have been validated by neuroimaging and histological studies. 

Furthermore, it’s been suggested that CSF Aβ42 and PET-PiB imaging provide partially 

independent information about a wide range of Alzheimer's measures, and that reduced 

cerebrospinal fluid amyloid-β may be more strongly related to early stage Alzheimer's disease 

(Mattsson et al. , 2015). Second, while biomarkers and cognitive data provide evidence of an 

Alzheimer’s disease-like trajectory, clinical endpoints are necessary to confirm the diagnostic 

accuracy of these clusters. Third, agglomerative hierarchical clustering is only one way to 

classify individuals on biomarkers. It will be important to investigate and compare other 

techniques like machine learning to the methods utilized in this study. Fourth, our study sample 

was largely white and well educated, and so is not be generalizable to all populations. It will be 

important to validate these results in more diverse cohorts. 

 

Alzheimer’s disease is a growing epidemic for which there is currently no treatment. With 

clinical trials beginning in the preclinical time period (ex. A4 study), there is imperative need for 

techniques to identify individuals with preclinical Alzheimer’s disease they can be recruited for 

clinical trials and eventually treatment (Sperling et al. , 2013). Our results suggest that 

techniques which combine multimodal information about early pathological changes could 

inform detection of preclinical Alzheimer’s disease and that longitudinal slopes of decline 

provide further information about disease trajectory. 
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