495 research outputs found

    Field-Theoretical Analysis of Critical and Coexistence Singularities at Critical End Points

    Full text link
    Continuum models with critical end points are considered whose Hamiltonian H[ϕ,ψ]{\mathcal{H}}[\phi,\psi] depends on two densities ϕ\phi and ψ\psi. Field-theoretic methods are used to show the equivalence of the critical behavior on the critical line and at the critical end point and to give a systematic derivation of critical-end-point singularities like the thermal singularity t2α\sim|{t}|^{2-\alpha} of the spectator-phase boundary and the coexistence singularities t1α\sim |{t}|^{1-\alpha} or tβ\sim|{t}|^{\beta} of the secondary density . The appearance of a discontinuity eigenexponent associated with the critical end point is confirmed, and the mechanism by which it arises in field theory is clarified.Comment: Latex2e file using elsart stylefile, no figures. submitted to Proceedings of Statphys Taipei-99, to be published in Physica

    Boundary critical behavior at m-axial Lifshitz points for a boundary plane parallel to the modulation axes

    Full text link
    The critical behavior of semi-infinite dd-dimensional systems with nn-component order parameter ϕ\bm{\phi} and short-range interactions is investigated at an mm-axial bulk Lifshitz point whose wave-vector instability is isotropic in an mm-dimensional subspace of Rd\mathbb{R}^d. The associated mm modulation axes are presumed to be parallel to the surface, where 0md10\le m\le d-1. An appropriate semi-infinite ϕ4|\bm{\phi}|^4 model representing the corresponding universality classes of surface critical behavior is introduced. It is shown that the usual O(n) symmetric boundary term ϕ2\propto \bm{\phi}^2 of the Hamiltonian must be supplemented by one of the form λ˚α=1m(ϕ/xα)2\mathring{\lambda} \sum_{\alpha=1}^m(\partial\bm{\phi}/\partial x_\alpha)^2 involving a dimensionless (renormalized) coupling constant λ\lambda. The implied boundary conditions are given, and the general form of the field-theoretic renormalization of the model below the upper critical dimension d(m)=4+m/2d^*(m)=4+{m}/{2} is clarified. Fixed points describing the ordinary, special, and extraordinary transitions are identified and shown to be located at a nontrivial value λ\lambda^* if ϵd(m)d>0\epsilon\equiv d^*(m)-d>0. The surface critical exponents of the ordinary transition are determined to second order in ϵ\epsilon. Extrapolations of these ϵ\epsilon expansions yield values of these exponents for d=3d=3 in good agreement with recent Monte Carlo results for the case of a uniaxial (m=1m=1) Lifshitz point. The scaling dimension of the surface energy density is shown to be given exactly by d+m(θ1)d+m (\theta-1), where θ=νl4/νl2\theta=\nu_{l4}/\nu_{l2} is the anisotropy exponent.Comment: revtex4, 31 pages with eps-files for figures, uses texdraw to generate some graphs; to appear in PRB; v2: some references and additional remarks added, labeling in figure 1 and some typos correcte

    Analytic Solution of Emden-Fowler Equation and Critical Adsorption in Spherical Geometry

    Full text link
    In the framework of mean-field theory the equation for the order-parameter profile in a spherically-symmetric geometry at the bulk critical point reduces to an Emden-Fowler problem. We obtain analytic solutions for the surface universality class of extraordinary transitions in d=4d=4 for a spherical shell, which may serve as a starting point for a pertubative calculation. It is demonstrated that the solution correctly reproduces the Fisher-de Gennes effect in the limit of the parallel-plate geometry.Comment: (to be published in Z. Phys. B), 7 pages, 1 figure, uuencoded postscript file, 8-9

    Dynamic surface scaling behavior of isotropic Heisenberg ferromagnets

    Full text link
    The effects of free surfaces on the dynamic critical behavior of isotropic Heisenberg ferromagnets are studied via phenomenological scaling theory, field-theoretic renormalization group tools, and high-precision computer simulations. An appropriate semi-infinite extension of the stochastic model J is constructed, the boundary terms of the associated dynamic field theory are identified, its renormalization in d <= 6 dimensions is clarified, and the boundary conditions it satisfies are given. Scaling laws are derived which relate the critical indices of the dynamic and static infrared singularities of surface quantities to familiar static bulk and surface exponents. Accurate computer-simulation data are presented for the dynamic surface structure factor; these are in conformity with the predicted scaling behavior and could be checked by appropriate scattering experiments.Comment: 9 pages, 2 figure

    Dynamical Relaxation and Universal Short-Time Behavior in Finite Systems: The Renormalization Group Approach

    Full text link
    We study how the finite-sized n-component model A with periodic boundary conditions relaxes near its bulk critical point from an initial nonequilibrium state with short-range correlations. Particular attention is paid to the universal long-time traces that the initial condition leaves. An approach based on renormalization-group improved perturbation theory in 4-epsilon space dimensions and a nonperturbative treatment of the q=0 mode of the fluctuating order-parameter field is developed. This leads to a renormalized effective stochastic equation for this mode in the background of the other q=0 modes; we explicitly derive it to one-loop order, show that it takes the expected finite-size scaling form at the fixed point, and solve it numerically. Our results confirm for general n that the amplitude of the magnetization density m(t) in the linear relaxation-time regime depends on the initial magnetization in the universal fashion originally found in our large-nn analysis [J.\ Stat. Phys. 73 (1993) 1]. The anomalous short-time power-law increase of m(t) also is recovered. For n=1, our results are in fair agreement with recent Monte Carlo simulations by Li, Ritschel, and Zheng [J. Phys. A 27 (1994) L837] for the three-dimensional Ising model.Comment: 27 pages, 7 postscript figures, REVTEX 3.0, submitted to Nucl. Phys.

    Ising cubes with enhanced surface couplings

    Full text link
    Using Monte Carlo techniques, Ising cubes with ferromagnetic nearest-neighbor interactions and enhanced couplings between surface spins are studied. In particular, at the surface transition, the corner magnetization shows non-universal, coupling-dependent critical behavior in the thermodynamic limit. Results on the critical exponent of the corner magnetization are compared to previous findings on two-dimensional Ising models with three intersecting defect lines.Comment: 4 pages, 2 figures included, submitted to Phys. Rev.

    Critical Casimir amplitudes for nn-component ϕ4\phi^4 models with O(n)-symmetry breaking quadratic boundary terms

    Full text link
    Euclidean nn-component ϕ4\phi^4 theories whose Hamiltonians are O(n) symmetric except for quadratic symmetry breaking boundary terms are studied in films of thickness LL. The boundary terms imply the Robin boundary conditions nϕα=c˚α(j)ϕα\partial_n\phi_\alpha =\mathring{c}^{(j)}_\alpha \phi_\alpha at the boundary planes Bj=1,2\mathfrak{B}_{j=1,2} at z=0z=0 and z=Lz=L. Particular attention is paid to the cases in which mjm_j of the nn variables c˚α(j)\mathring{c}^{(j)}_\alpha take the special value c˚mj-sp\mathring{c}_{m_j\text{-sp}} corresponding to critical enhancement while the remaining ones are subcritically enhanced. Under these conditions, the semi-infinite system bounded by Bj\mathfrak{B}_j has a multicritical point, called mjm_j-special, at which an O(mj)O(m_j) symmetric critical surface phase coexists with the O(n) symmetric bulk phase, provided dd is sufficiently large. The LL-dependent part of the reduced free energy per area behaves as ΔC/Ld1\Delta_C/L^{d-1} as LL\to\infty at the bulk critical point. The Casimir amplitudes ΔC\Delta_C are determined for small ϵ=4d\epsilon=4-d in the general case where mc,cm_{c,c} components ϕα\phi_\alpha are critically enhanced at both boundary planes, mc,D+mD,cm_{c,D} + m_{D,c} components are enhanced at one plane but satisfy asymptotic Dirichlet boundary conditions at the respective other, and the remaining mD,Dm_{D,D} components satisfy asymptotic Dirichlet boundary conditions at both Bj\mathfrak{B}_j. Whenever mc,c>0m_{c,c}>0, these expansions involve integer and fractional powers ϵk/2\epsilon^{k/2} with k3k\ge 3 (mod logarithms). Results to O(ϵ3/2)O(\epsilon^{3/2}) for general values of mc,cm_{c,c}, mc,D+mD,cm_{c,D}+m_{D,c}, and mD,Dm_{D,D} are used to estimate the ΔC\Delta_C of 3D Heisenberg systems with surface spin anisotropies when (mc,c,mc,D+mD,c)=(1,0)(m_{c,c}, m_{c,D}+ m_{D,c}) = (1,0), (0,1)(0,1), and (1,1)(1,1).Comment: Latex source file with 5 eps files; version with minor amendments and corrected typo

    Topological Defects, Orientational Order, and Depinning of the Electron Solid in a Random Potential

    Full text link
    We report on the results of molecular dynamics simulation (MD) studies of the classical two-dimensional electron crystal in the presence disorder. Our study is motivated by recent experiments on this system in modulation doped semiconductor systems in very strong magnetic fields, where the magnetic length is much smaller than the average interelectron spacing a0a_0, as well as by recent studies of electrons on the surface of helium. We investigate the low temperature state of this system using a simulated annealing method. We find that the low temperature state of the system always has isolated dislocations, even at the weakest disorder levels investigated. We also find evidence for a transition from a hexatic glass to an isotropic glass as the disorder is increased. The former is characterized by quasi-long range orientational order, and the absence of disclination defects in the low temperature state, and the latter by short range orientational order and the presence of these defects. The threshold electric field is also studied as a function of the disorder strength, and is shown to have a characteristic signature of the transition. Finally, the qualitative behavior of the electron flow in the depinned state is shown to change continuously from an elastic flow to a channel-like, plastic flow as the disorder strength is increased.Comment: 31 pages, RevTex 3.0, 15 figures upon request, accepted for publication in Phys. Rev. B., HAF94MD

    A Simple Model for the DNA Denaturation Transition

    Full text link
    We study pairs of interacting self-avoiding walks on the 3d simple cubic lattice. They have a common origin and are allowed to overlap only at the same monomer position along the chain. The latter overlaps are indeed favored by an energetic gain. This is inspired by a model introduced long ago by Poland and Sheraga [J. Chem. Phys. {\bf 45}, 1464 (1966)] for the denaturation transition in DNA where, however, self avoidance was not fully taken into account. For both models, there exists a temperature T_m above which the entropic advantage to open up overcomes the energy gained by forming tightly bound two-stranded structures. Numerical simulations of our model indicate that the transition is of first order (the energy density is discontinuous), but the analog of the surface tension vanishes and the scaling laws near the transition point are exactly those of a second order transition with crossover exponent \phi=1. Numerical and exact analytic results show that the transition is second order in modified models where the self-avoidance is partially or completely neglected.Comment: 29 pages, LaTeX, 20 postscript figure

    Universal finite-size scaling analysis of Ising models with long-range interactions at the upper critical dimensionality: Isotropic case

    Full text link
    We investigate a two-dimensional Ising model with long-range interactions that emerge from a generalization of the magnetic dipolar interaction in spin systems with in-plane spin orientation. This interaction is, in general, anisotropic whereby in the present work we focus on the isotropic case for which the model is found to be at its upper critical dimensionality. To investigate the critical behavior the temperature and field dependence of several quantities are studied by means of Monte Carlo simulations. On the basis of the Privman-Fisher hypothesis and results of the renormalization group the numerical data are analyzed in the framework of a finite-size scaling analysis and compared to finite-size scaling functions derived from a Ginzburg-Landau-Wilson model in zero mode (mean-field) approximation. The obtained excellent agreement suggests that at least in the present case the concept of universal finite-size scaling functions can be extended to the upper critical dimensionality.Comment: revtex4, 10 pages, 5 figures, 1 tabl
    corecore