1,942 research outputs found
Recommended from our members
Modelling of monopile-footing foundation system for offshore structures
While monopiles have proven to be an economically sound foundation solution for wind turbines, especially in relatively shallow water, their installation in deeper water and in hard ground may require a more complex foundation design in order to satisfy the loading conditions. One approach is that foundation systems are developed which combine several foundation elements to create a ‘hybrid’ system. In this way it is possible to develop a foundation system which is more efficient for the combination of vertical and lateral loads associated with wind turbines while maintaining the efficiency and simplicity of the design. Previous studies have reported the results of single gravity tests of the hybrid system where the benefits of adding the footing to the pile are illustrated. This paper presents experimental results on the performance of skirted and unskirted monopile-footings. A simplified design approach based on conventional lateral pile analysis is presented
Search for Possible Variation of the Fine Structure Constant
Determination of the fine structure constant alpha and search for its
possible variation are considered. We focus on a role of the fine structure
constant in modern physics and discuss precision tests of quantum
electrodynamics. Different methods of a search for possible variations of
fundamental constants are compared and those related to optical measurements
are considered in detail.Comment: An invited talk at HYPER symposium (Paris, 2002
Emergent Gravity from Noncommutative Gauge Theory
We show that the matrix-model action for noncommutative U(n) gauge theory
actually describes SU(n) gauge theory coupled to gravity. This is elaborated in
the 4-dimensional case. The SU(n) gauge fields as well as additional scalar
fields couple to an effective metric G_{ab}, which is determined by a dynamical
Poisson structure. The emergent gravity is intimately related to
noncommutativity, encoding those degrees of freedom which are usually
interpreted as U(1) gauge fields. This leads to a class of metrics which
contains the physical degrees of freedom of gravitational waves, and allows to
recover e.g. the Newtonian limit with arbitrary mass distribution. It also
suggests a consistent picture of UV/IR mixing in terms of an induced gravity
action. This should provide a suitable framework for quantizing gravity.Comment: 28 pages + 11 pages appendix. V2: references and discussion added.
V3: minor correctio
Theory for Metal Hydrides with Switchable Optical Properties
Recently it has been discovered that lanthanum, yttrium, and other metal
hydride films show dramatic changes in the optical properties at the
metal-insulator transition. Such changes on a high energy scale suggest the
electronic structure is best described by a local model based on negatively
charged hydrogen (H) ions. We develop a many-body theory for the strong
correlation in a H ion lattice. The metal hydride is described by a large
-limit of an Anderson lattice model. We use lanthanum hydride as a prototype
of these compounds, and find LaH is an insulator with a substantial gap
consistent with experiments. It may be viewed either as a Kondo insulator or a
band insulator due to strong electron correlation. A H vacancy state in LaH
is found to be highly localized due to the strong bonding between the electron
orbitals of hydrogen and metal atoms. Unlike the impurity states in the usual
semiconductors, there is only weak internal optical transitions within the
vacancy. The metal-insulator transition takes place in a band of these vacancy
states.Comment: 18 pages, 16 figures and 6 tables. Submitted to PR
Noncommutative Electromagnetism As A Large N Gauge Theory
We map noncommutative (NC) U(1) gauge theory on R^d_C X R^{2n}_{NC} to U(N ->
\infty) Yang-Mills theory on R^d_C, where R^d_C is a d-dimensional commutative
spacetime while R^{2n}_{NC} is a 2n-dimensional NC space. The resulting U(N)
Yang-Mills theory on R^d_C is equivalent to that obtained by the dimensional
reduction of (d+2n)-dimensional U(N) Yang-Mills theory onto R^d_C. We show that
the gauge-Higgs system (A_\mu,\Phi^a) in the U(N -> \infty) Yang-Mills theory
on R^d_C leads to an emergent geometry in the (d+2n)-dimensional spacetime
whose metric was determined by Ward a long time ago. In particular, the
10-dimensional gravity for d=4 and n=3 corresponds to the emergent geometry
arising from the 4-dimensional N=4 vector multiplet in the AdS/CFT duality. We
further elucidate the emergent gravity by showing that the gauge-Higgs system
(A_\mu,\Phi^a) in half-BPS configurations describes self-dual Einstein gravity.Comment: 25 pages; More clarifications, to appear in Eur. Phys. J.
Study protocol for "Moving bright, eating smart"- a phase 2 clinical trial on the acceptability and feasibility of a diet and physical activity intervention to prevent recurrence in colorectal cancer survivors
Background: Colorectal cancer is the second most common cancer and cancer-killer in Hong Kong with an alarming increasing incidence in recent years. The latest World Cancer Research Fund report concluded that foods low in fibre, and high in red and processed meat cause colorectal cancer whereas physical activity protects againstcolon cancer. Yet, the influence of these lifestyle factors on cancer outcome is largely unknown even though cancer survivors are eager for lifestyle modifications. Observational studies suggested that low intake of a Western-pattern diet and high physical activity level reduced colorectal cancer mortality. The Theory of PlannedBehaviour and the Health Action Process Approach have guided the design of intervention models targeting a wide range of health-related behaviours.Methods/design: We aim to demonstrate the feasibility of two behavioural interventions intended to improve colorectal cancer outcome and which are designed to increase physical activity level and reduce consumption of a Western-pattern diet. This three year study will be a multicentre, randomised controlled trial in a 2x2 factorialdesign comparing the “Moving Bright, Eating Smart” (physical activity and diet) programme against usual care. Subjects will be recruited over a 12-month period, undertake intervention for 12 months and followed up for a further 12 months. Baseline, interim and three post-intervention assessments will be conducted. Two hundred and twenty-two colorectal cancer patients who completed curative treatment without evidence of recurrence will be recruited into the study. Primary outcome measure will be whether physical activity and dietary targets are met at the end of the 12-month intervention. Secondary outcome measures include the magnitude andmechanism of behavioural change, the degree and determinants of compliance, and the additional health benefits and side effects of the intervention.Discussion: The results of this study will establish the feasibility of targeting the two behaviours (diet and physical activity) and demonstrate the magnitude of behaviour change. The information will facilitate the design of a further larger phase III randomised controlled trial with colorectal cancer outcome as the study endpoint to determine whether this intervention model would reduce colorectal cancer recurrence and mortality
The Flare-energy Distributions Generated by Kink-unstable Ensembles of Zero-net-current Coronal Loops
It has been proposed that the million degree temperature of the corona is due
to the combined effect of barely-detectable energy releases, so called
nanoflares, that occur throughout the solar atmosphere. Alas, the nanoflare
density and brightness implied by this hypothesis means that conclusive
verification is beyond present observational abilities. Nevertheless, we
investigate the plausibility of the nanoflare hypothesis by constructing a
magnetohydrodynamic (MHD) model that can derive the energy of a nanoflare from
the nature of an ideal kink instability. The set of energy-releasing
instabilities is captured by an instability threshold for linear kink modes.
Each point on the threshold is associated with a unique energy release and so
we can predict a distribution of nanoflare energies. When the linear
instability threshold is crossed, the instability enters a nonlinear phase as
it is driven by current sheet reconnection. As the ensuing flare erupts and
declines, the field transitions to a lower energy state, which is modelled by
relaxation theory, i.e., helicity is conserved and the ratio of current to
field becomes invariant within the loop. We apply the model so that all the
loops within an ensemble achieve instability followed by energy-releasing
relaxation. The result is a nanoflare energy distribution. Furthermore, we
produce different distributions by varying the loop aspect ratio, the nature of
the path to instability taken by each loop and also the level of radial
expansion that may accompany loop relaxation. The heating rate obtained is just
sufficient for coronal heating. In addition, we also show that kink instability
cannot be associated with a critical magnetic twist value for every point along
the instability threshold
Influence of history on saccade countermanding performance in humans and macaque monkeys
AbstractThe stop-signal or countermanding task probes the ability to control action by requiring subjects to withhold a planned movement in response to an infrequent stop signal which they do with variable success depending on the delay of the stop signal. We investigated whether performance of humans and macaque monkeys in a saccade countermanding task was influenced by stimulus and performance history. In spite of idiosyncrasies across subjects several trends were evident in both humans and monkeys. Response time decreased after successive trials with no stop signal. Response time increased after successive trials with a stop signal. However, post-error slowing was not observed. Increased response time was observed mainly or only after cancelled (signal inhibit) trials and not after noncancelled (signal respond) trials. These global trends were based on rapid adjustments of response time in response to momentary fluctuations in the fraction of stop signal trials. The effects of trial sequence on the probability of responding were weaker and more idiosyncratic across subjects when stop signal fraction was fixed. However, both response time and probability of responding were influenced strongly by variations in the fraction of stop signal trials. These results indicate that the race model of countermanding performance requires extension to account for these sequential dependencies and provide a basis for physiological studies of executive control of countermanding saccade performance
Screening and techno-economic assessment of biomass-based power generation with CCS technologies to meet 2050 CO2 targets
Biomass-based power generation combined with CO2 capture and storage (Biopower CCS) currently represents one of the few practical and economic means of removing large quantities of CO2 from the atmosphere, and the only approach that involves the generation of electricity at the same time. We present the results of the Techno-Economic Study of Biomass to Power with CO2 capture (TESBiC) project, that entailed desk-based review and analysis, process engineering, optimisation as well as primary data collection from some of the leading pilot demonstration plants. From the perspective of being able to deploy Biopower CCS by 2050, twenty-eight Biopower CCS technology combinations involving combustion or gasification of biomass (either dedicated or co-fired with coal) together with pre-, oxy- or post-combustion CO2 capture were identified and assessed. In addition to the capital and operating costs, techno-economic characteristics such as electrical efficiencies (LHV% basis), Levelised Cost of Electricity (LCOE), costs of CO2 captured and CO2 avoided were modelled over time assuming technology improvements from today to 2050. Many of the Biopower CCS technologies gave relatively similar techno-economic results when analysed at the same scale, with the plant scale (MWe) observed to be the principal driver of CAPEX (£/MWe) and the cofiring % (i.e. the weighted feedstock cost) a key driver of LCOE. The data collected during the TESBiC project also highlighted the lack of financial incentives for generation of electricity with negative CO2 emissions
Recommended from our members
Environmental factors and host genetic variation shape the fungal endophyte communities within needles of Scots pine (Pinus sylvestris)
To determine the role of environmental and host genetic factors in shaping fungal endophyte communities we used culturing and metabarcoding techniques to quantify fungal taxa within healthy Scots pine (Pinus sylvestris) needles in a 7-y old provenance-progeny trial replicated at three sites. Both methods revealed a community of ascomycete and basidiomycete taxa dominated by the needle pathogen Lophodermium seditiosum. Differences in fungal endophyte taxon composition and diversity indices were highly significant among trial sites. Within two sites, fungal endophyte communities varied significantly among provenances. Furthermore, the communities differed significantly among maternal families within provenances in 11/15 and 7/15 comparisons involving culture and metabarcoding data respectively. We conclude that both environmental and host genetic variation shape the fungal endophyte community of P. sylvestris needles
- …