238 research outputs found

    An artificial immune system for fuzzy-rule induction in data mining

    Get PDF
    This work proposes a classification-rule discovery algorithm integrating artificial immune systems and fuzzy systems. The algorithm consists of two parts: a sequential covering procedure and a rule evolution procedure. Each antibody (candidate solution) corresponds to a classification rule. The classification of new examples (antigens) considers not only the fitness of a fuzzy rule based on the entire training set, but also the affinity between the rule and the new example. This affinity must be greater than a threshold in order for the fuzzy rule to be activated, and it is proposed an adaptive procedure for computing this threshold for each rule. This paper reports results for the proposed algorithm in several data sets. Results are analyzed with respect to both predictive accuracy and rule set simplicity, and are compared with C4.5rules, a very popular data mining algorithm

    The dissipative dynamics of the field of two-photon Jaynes-Cummings model with Stark shift in dispersive approximation

    Full text link
    We present the dissipative dynamics of the field of two-photon Jaynes-Cummings model (JCM) with Stark shift in dispersive approximation and investigate the influence of dissipation on entanglement. We show the coherence properties of the field can be affected by the dissipative cavity when nonlinear two-photon process is involved.Comment: 8 pages,3 figure

    The Na+/glucose cotransporters: from genes to therapy

    Get PDF
    Glucose enters eukaryotic cells via two types of membrane-associated carrier proteins, the Na+/glucose cotransporters (SGLT) and the facilitative glucose transporters (GLUT). The SGLT family consists of six members. Among them, the SGLT1 and SGLT2 proteins, encoded by the solute carrier genes SLC5A1 and SLC5A2, respectively, are believed to be the most important ones and have been extensively explored in studies focusing on glucose fluxes under both physiological and pathological conditions. This review considers the regulation of the expression of the SGLT promoted by protein kinases and transcription factors, as well as the alterations determined by diets of different compositions and by pathologies such as diabetes. It also considers congenital defects of sugar metabolism caused by aberrant expression of the SGLT1 in glucose-galactose malabsorption and the SGLT2 in familial renal glycosuria. Finally, it covers some pharmacological compounds that are being currently studied focusing on the interest of controlling glycemia by antagonizing SGLT in renal and intestinal tissues

    Retarding mechanism of Zn2+ species in geopolymer material using Raman spectroscopy and DFT calculations

    Get PDF
    Geopolymers are the most promising alternative to Ordinary Portland Cement for oil-well cementing and well abandonment. To that end, the slurry needs a required pumping time ensured by the addition of retarders. Although zinc has been widely known to prolong the setting time of geopolymers, its mechanism of action has yet to be fully elucidated. It is herein hypothesized that zinc ions impede the first stages of silicate oligomerization (Si–O–Al), culminating in longer setting times. Pumping time measurements showed that Zn(NO3)2 delayed the setting time by 5 h in comparison to the zinc-less sample. DFT calculations revealed Si(OH)4 to react with [Zn(OH)4]2− via a barrierless transition state, evidencing a kinetic ground for the retardation effect. Additionally, Raman spectroscopy corroborated the DFT results by showing that Q3 species in the proposed mechanism are formed more rapidly in the presence of zinc ions than in its absence.publishedVersio

    Dengue in Madeira Island

    Get PDF
    This is a preprint of a paper whose final and definite form will be published in the volume Mathematics of Planet Earth that initiates the book series CIM Series in Mathematical Sciences (CIM-MS) published by Springer. Submitted Oct/2013; Revised 16/July/2014 and 20/Sept/2014; Accepted 28/Sept/2014.Dengue is a vector-borne disease and 40% of world population is at risk. Dengue transcends international borders and can be found in tropical and subtropical regions around the world, predominantly in urban and semi-urban areas. A model for dengue disease transmission, composed by mutually-exclusive compartments representing the human and vector dynamics, is presented in this study. The data is from Madeira, a Portuguese island, where an unprecedented outbreak was detected on October 2012. The aim of this work is to simulate the repercussions of the control measures in the fight of the disease
    corecore