141 research outputs found
Approach to equilibrium for a class of random quantum models of infinite range
We consider random generalizations of a quantum model of infinite range
introduced by Emch and Radin. The generalization allows a neat extension from
the class of absolutely summable lattice potentials to the optimal class
of square summable potentials first considered by Khanin and Sinai and
generalised by van Enter and van Hemmen. The approach to equilibrium in the
case of a Gaussian distribution is proved to be faster than for a Bernoulli
distribution for both short-range and long-range lattice potentials. While
exponential decay to equilibrium is excluded in the nonrandom case, it is
proved to occur for both short and long range potentials for Gaussian
distributions, and for potentials of class in the Bernoulli case. Open
problems are discussed.Comment: 10 pages, no figures. This last version, to appear in J. Stat. Phys.,
corrects some minor errors and includes additional references and comments on
the relation to experiment
HyperCP: A high-rate spectrometer for the study of charged hyperon and kaon decays
The HyperCP experiment (Fermilab E871) was designed to search for rare
phenomena in the decays of charged strange particles, in particular CP
violation in and hyperon decays with a sensitivity of
. Intense charged secondary beams were produced by 800 GeV/c protons
and momentum-selected by a magnetic channel. Decay products were detected in a
large-acceptance, high-rate magnetic spectrometer using multiwire proportional
chambers, trigger hodoscopes, a hadronic calorimeter, and a muon-detection
system. Nearly identical acceptances and efficiencies for hyperons and
antihyperons decaying within an evacuated volume were achieved by reversing the
polarities of the channel and spectrometer magnets. A high-rate
data-acquisition system enabled 231 billion events to be recorded in twelve
months of data-taking.Comment: 107 pages, 45 Postscript figures, 14 tables, Elsevier LaTeX,
submitted to Nucl. Instrum. Meth.
Multiple Interactions and the Structure of Beam Remnants
Recent experimental data have established some of the basic features of
multiple interactions in hadron-hadron collisions. The emphasis is therefore
now shifting, to one of exploring more detailed aspects. Starting from a brief
review of the current situation, a next-generation model is developed, wherein
a detailed account is given of correlated flavour, colour, longitudinal and
transverse momentum distributions, encompassing both the partons initiating
perturbative interactions and the partons left in the beam remnants. Some of
the main features are illustrated for the Tevatron and the LHC.Comment: 69pp, 33 figure
Recommended from our members
Neutron diffraction dissociation and coulomb dissociation from various nuclei
We propose to use the 1.75 mr neutral beam in the Meson Lab to study the reaction n + A {yields} N* + A (p + {pi}{sup -}) for targets with as large a range in atomic weight as possible (e.g. hydrogen through lead) and incident neutron energies from approximately 80 to 200 GeV. The aim is to study (1) the cross section vs. energy and mass for (p{pi}{sup -}) masses from 1.08 to approximately 4.7 GeV, (2) the A dependence of the cross section from which information on N* total cross sections in nuclear matter can be extracted, (3) the t-dependence which, for the lighter elements, gives information on quantum numbers of the N* and the exchanged particle can be extracted. This experiment would be a natural extension of a similar experiment carried out by our group at the AGS last summer. The experience gained in the AGS experiment will be very valuable in designing an experiment for NAL
Electromagnetic and Hadron Calorimeters in the MIPP Experiment
The purpose of the MIPP experiment is to study the inclusive production of
photons, pions, kaons and nucleons in pi, K and p interactions on various
targets using beams from the Main Injector at Fermilab. The function of the
calorimeters is to measure the production of forward-going neutrons and
photons. The electromagnetic calorimeter consist of 10 lead plates interspersed
with proportional chambers. It was followed by the hadron calorimeter with 64
steel plates interspersed with scintillator. The data presented were collected
with a variety of targets and beam momenta from 5 GeV/c to 120 GeV/c. The
energy calibration of both calorimeters with electrons, pions, kaons, and
protons is discussed. The resolution for electrons was found to be
0.27/sqrt(E), and for hadrons the resolution was 0.554/sqrt(E) with a constant
term of 2.6%. The performance of the calorimeters was tested on a neutron
sample
Extensive Air Showers from Ultra High Energy Gluinos
We study the proposal that the cosmic ray primaries above the
Greisen-Zatsepin-Kuzmin (GZK) cutoff are gluino-containing hadrons (-hadrons). We describe the interaction of -hadrons with nucleons in
the framework of the Gribov-Regge approach using a modified version of the
hadronic interaction model QGSJET for the generations of Extensive Air Showers
(EAS). There are two mass windows marginally allowed for gluinos: m_{\tilde
g}\lsim 3 GeV and 25\lsim m_{\tilde g}\lsim 35 GeV. Gluino-containing
hadrons corresponding to the second window produce EAS very different from the
observed ones. Light -hadrons corresponding to the first gluino
window produce EAS similar to those initiated by protons, and only future
detectors can marginally distinguish them. We propose a beam-dump accelerator
experiment to search for -hadrons in this mass window. We emphasize
the importance of this experiment: it can discover (or exclude) the light
gluino and its role as a cosmic ray primary at ultra high energies.Comment: 27 pages latex, 13 eps figure
Galaxy Clusters Associated with Short GRBs. II. Predictions for the Rate of Short GRBs in Field and Cluster Early-Type Galaxies
We determine the relative rates of short GRBs in cluster and field early-type
galaxies as a function of the age probability distribution of their
progenitors, P(\tau) \propto \tau^n. This analysis takes advantage of the
difference in the growth of stellar mass in clusters and in the field, which
arises from the combined effects of the galaxy stellar mass function, the
early-type fraction, and the dependence of star formation history on mass and
environment. This approach complements the use of the early- to late-type host
galaxy ratio, with the added benefit that the star formation histories of
early-type galaxies are simpler than those of late-type galaxies, and any
systematic differences between progenitors in early- and late-type galaxies are
removed. We find that the ratio varies from R(cluster)/R(field) ~ 0.5 for n =
-2 to ~ 3 for n = 2. Current observations indicate a ratio of about 2,
corresponding to n ~ 0 - 1. This is similar to the value inferred from the
ratio of short GRBs in early- and late-type hosts, but it differs from the
value of n ~ -1 for NS binaries in the Milky Way. We stress that this general
approach can be easily modified with improved knowledge of the effects of
environment and mass on the build-up of stellar mass, as well as the effect of
globular clusters on the short GRB rate. It can also be used to assess the age
distribution of Type Ia supernova progenitors.Comment: ApJ accepted versio
Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube
The Advanced LIGO observatories detected gravitational waves from two binary black hole mergers during their first observation run (O1). We present a high-energy neutrino follow-up search for the second gravitational wave event, GW151226, as well as for gravitational wave candidate LVT151012. We find two and four neutrino candidates detected by IceCube, and one and zero detected by Antares, within ±500 s around the respective gravitational wave signals, consistent with the expected background rate. None of these neutrino candidates are found to be directionally coincident with GW151226 or LVT151012. We use nondetection to constrain isotropic-equivalent high-energy neutrino emission from GW151226, adopting the GW event's 3D localization, to less than 2×1051-2×1054 erg. © 2017 American Physical Society
Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers
We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is 6.87° in diameter and centered on 20h10m54.71s+33°33′25.29′′, and the other (B) is 7.45° in diameter and centered on 8h35m20.61s-46°49′25.151′′. We explored the frequency range of 50-1500 Hz and frequency derivative from 0 to -5×10-9 Hz/s. A multistage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous follow-up parameters have winnowed the initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational-wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near 169 Hz we achieve our lowest 95% C.L. upper limit on the worst-case linearly polarized strain amplitude h0 of 6.3×10-25, while at the high end of our frequency range we achieve a worst-case upper limit of 3.4×10-24 for all polarizations and sky locations. © 2016 American Physical Society
- …
