365 research outputs found
Epidemic spreading with immunization and mutations
The spreading of infectious diseases with and without immunization of
individuals can be modeled by stochastic processes that exhibit a transition
between an active phase of epidemic spreading and an absorbing phase, where the
disease dies out. In nature, however, the transmitted pathogen may also mutate,
weakening the effect of immunization. In order to study the influence of
mutations, we introduce a model that mimics epidemic spreading with
immunization and mutations. The model exhibits a line of continuous phase
transitions and includes the general epidemic process (GEP) and directed
percolation (DP) as special cases. Restricting to perfect immunization in two
spatial dimensions we analyze the phase diagram and study the scaling behavior
along the phase transition line as well as in the vicinity of the GEP point. We
show that mutations lead generically to a crossover from the GEP to DP. Using
standard scaling arguments we also predict the form of the phase transition
line close to the GEP point. It turns out that the protection gained by
immunization is vitally decreased by the occurrence of mutations.Comment: 9 pages, 13 figure
Exact Resummations in the Theory of Hydrodynamic Turbulence: I The Ball of Locality and Normal Scaling
This paper is the first in a series of three papers that aim at understanding
the scaling behaviour of hydrodynamic turbulence. We present in this paper a
perturbative theory for the structure functions and the response functions of
the hydrodynamic velocity field in real space and time. Starting from the
Navier-Stokes equations (at high Reynolds number Re) we show that the standard
perturbative expansions that suffer from infra-red divergences can be exactly
resummed using the Belinicher-L'vov transformation. After this exact (partial)
resummation it is proven that the resulting perturbation theory is free of
divergences, both in large and in small spatial separations. The hydrodynamic
response and the correlations have contributions that arise from mediated
interactions which take place at some space- time coordinates. It is shown that
the main contribution arises when these coordinates lie within a shell of a
"ball of locality" that is defined and discussed. We argue that the real
space-time formalism developed here offers a clear and intuitive understanding
of every diagram in the theory, and of every element in the diagrams. One major
consequence of this theory is that none of the familiar perturbative mechanisms
may ruin the classical Kolmogorov (K41) scaling solution for the structure
functions. Accordingly, corrections to the K41 solutions should be sought in
nonperturbative effects. These effects are the subjects of papers II and III in
this series, that will propose a mechanism for anomalous scaling in turbulence,
which in particular allows multiscaling of the structure functions.Comment: PRE in press, 18 pages + 6 figures, REVTeX. The Eps files of figures
will be FTPed by request to [email protected]
Subjective sleep patterns and jet-lag symptoms of junior netball players prior to and during an international tournament : a case study
PURPOSE : To assess the impact of long-haul transmeridian travel on subjective sleep patterns and jet lag symptoms in youth athletes around an international tournament.
METHODS : An observational descriptive design was used. Subjective sleep diaries and perceived responses to jet lag were collected and analyzed for a national junior netball team competing in an international tournament. Sleep diaries and questionnaires were completed daily prior to and during travel, and throughout the tournament. Results were categorized into pretravel, travel, training, and match nights. Means were compared performing a paired Student t test with significance set at P < .05. Data are presented as mean (SD) and median (minimum, maximum).
RESULTS : Athletes reported significantly greater time in bed on match days compared with training (P < .001) and travel (P = .002) days, and on pretravel days compared with travel (P < .001) and training (P = .028) days. Sleep ratings were significantly better on pretravel days compared with match (P = .013) days. Perceived jet lag was worse on match (P = .043) days compared with pretravel days. Significant differences were also observed between a number of conditions for meals, mood, bowel activity, and fatigue.
CONCLUSION : Youth athletes experience significantly less opportunity for sleep during long-haul transmeridian travel and face disruptions to daily routines during travel which impact food intake. Young athletes also experience disturbed sleep prior to and during competition. These results highlight the need for practices to alleviate jet lag symptoms and improve the sleep of young athletes traveling for tournaments in an effort to optimize recovery and performance.https://journals.humankinetics.com/view/journals/ijspp/ijspp-overview.xmlhj2023Sports Medicin
Measurement of D* Meson Cross Sections at HERA and Determination of the Gluon Density in the Proton using NLO QCD
With the H1 detector at the ep collider HERA, D* meson production cross
sections have been measured in deep inelastic scattering with four-momentum
transfers Q^2>2 GeV2 and in photoproduction at energies around W(gamma p)~ 88
GeV and 194 GeV. Next-to-Leading Order QCD calculations are found to describe
the differential cross sections within theoretical and experimental
uncertainties. Using these calculations, the NLO gluon momentum distribution in
the proton, x_g g(x_g), has been extracted in the momentum fraction range
7.5x10^{-4}< x_g <4x10^{-2} at average scales mu^2 =25 to 50 GeV2. The gluon
momentum fraction x_g has been obtained from the measured kinematics of the
scattered electron and the D* meson in the final state. The results compare
well with the gluon distribution obtained from the analysis of scaling
violations of the proton structure function F_2.Comment: 27 pages, 9 figures, 2 tables, submitted to Nucl. Phys.
Measurement of Leading Proton and Neutron Production in Deep Inelastic Scattering at HERA
Deep--inelastic scattering events with a leading baryon have been detected by
the H1 experiment at HERA using a forward proton spectrometer and a forward
neutron calorimeter. Semi--inclusive cross sections have been measured in the
kinematic region 2 <= Q^2 <= 50 GeV^2, 6.10^-5 <= x <= 6.10^-3 and baryon p_T
<= MeV, for events with a final state proton with energy 580 <= E' <= 740 GeV,
or a neutron with energy E' >= 160 GeV. The measurements are used to test
production models and factorization hypotheses. A Regge model of leading baryon
production which consists of pion, pomeron and secondary reggeon exchanges
gives an acceptable description of both semi-inclusive cross sections in the
region 0.7 <= E'/E_p <= 0.9, where E_p is the proton beam energy. The leading
neutron data are used to estimate for the first time the structure function of
the pion at small Bjorken--x.Comment: 30 pages, 9 figures, 2 tables, submitted to Eur. Phys.
Low Q^2 Jet Production at HERA and Virtual Photon Structure
The transition between photoproduction and deep-inelastic scattering is
investigated in jet production at the HERA ep collider, using data collected by
the H1 experiment. Measurements of the differential inclusive jet
cross-sections dsigep/dEt* and dsigmep/deta*, where Et* and eta* are the
transverse energy and the pseudorapidity of the jets in the virtual
photon-proton centre of mass frame, are presented for 0 < Q2 < 49 GeV2 and 0.3
< y < 0.6. The interpretation of the results in terms of the structure of the
virtual photon is discussed. The data are best described by QCD calculations
which include a partonic structure of the virtual photon that evolves with Q2.Comment: 20 pages, 5 Figure
Hadron Production in Diffractive Deep-Inelastic Scattering
Characteristics of hadron production in diffractive deep-inelastic
positron-proton scattering are studied using data collected in 1994 by the H1
experiment at HERA. The following distributions are measured in the
centre-of-mass frame of the photon dissociation system: the hadronic energy
flow, the Feynman-x (x_F) variable for charged particles, the squared
transverse momentum of charged particles (p_T^{*2}), and the mean p_T^{*2} as a
function of x_F. These distributions are compared with results in the gamma^* p
centre-of-mass frame from inclusive deep-inelastic scattering in the
fixed-target experiment EMC, and also with the predictions of several Monte
Carlo calculations. The data are consistent with a picture in which the
partonic structure of the diffractive exchange is dominated at low Q^2 by hard
gluons.Comment: 16 pages, 6 figures, submitted to Phys. Lett.
Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA
An investigation of the hadronic final state in diffractive and
non--diffractive deep--inelastic electron--proton scattering at HERA is
presented, where diffractive data are selected experimentally by demanding a
large gap in pseudo --rapidity around the proton remnant direction. The
transverse energy flow in the hadronic final state is evaluated using a set of
estimators which quantify topological properties. Using available Monte Carlo
QCD calculations, it is demonstrated that the final state in diffractive DIS
exhibits the features expected if the interaction is interpreted as the
scattering of an electron off a current quark with associated effects of
perturbative QCD. A model in which deep--inelastic diffraction is taken to be
the exchange of a pomeron with partonic structure is found to reproduce the
measurements well. Models for deep--inelastic scattering, in which a
sizeable diffractive contribution is present because of non--perturbative
effects in the production of the hadronic final state, reproduce the general
tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil
A Search for Selectrons and Squarks at HERA
Data from electron-proton collisions at a center-of-mass energy of 300 GeV
are used for a search for selectrons and squarks within the framework of the
minimal supersymmetric model. The decays of selectrons and squarks into the
lightest supersymmetric particle lead to final states with an electron and
hadrons accompanied by large missing energy and transverse momentum. No signal
is found and new bounds on the existence of these particles are derived. At 95%
confidence level the excluded region extends to 65 GeV for selectron and squark
masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure
- …