66 research outputs found
Novel universality classes of coupled driven diffusive systems
Motivated by the phenomenologies of dynamic roughening of strings in random
media and magnetohydrodynamics, we examine the universal properties of driven
diffusive system with coupled fields. We demonstrate that cross-correlations
between the fields lead to amplitude-ratios and scaling exponents varying
continuosly with the strength of these cross-correlations. The implications of
these results for experimentally relevant systems are discussed.Comment: To appear in Phys. Rev. E (Rapid Comm.) (2003
Coupled non-equilibrium growth equations: Self-consistent mode coupling using vertex renormalization
We find that studying the simplest of the coupled non-equilibrium growth
equations of Barabasi by self-consistent mode coupling requires the use of
dressed vertices. Using the vertex renormalization, we find a roughness
exponent which already in the leading order is quite close to the numerical
value.Comment: 7 pages, 3 figure
Supplemental Nutrition Assistance Program (SNAP) participation and health care expenditures among low-income adults
IMPORTANCE: Food insecurity is associated with high health care expenditures, but the effectiveness of food insecurity interventions on health care costs is unknown. OBJECTIVE: To determine whether the Supplemental Nutrition Assistance Program (SNAP), which addresses food insecurity, can reduce health care expenditures. DESIGN, SETTING, AND PARTICIPANTS: This is a retrospective cohort study of 4447 noninstitutionalized adults with income below 200% of the federal poverty threshold who participated in the 2011 National Health Interview Survey (NHIS) and the 2012-2013 Medical Expenditure Panel Survey (MEPS). EXPOSURES: Self-reported SNAP participation in 2011. MAIN OUTCOMES AND MEASURES: Total health care expenditures (all paid claims and out-of-pocket costs) in the 2012-2013 period. To test whether SNAP participation was associated with lower subsequent health care expenditures, we used generalized linear modeling (gamma distribution, log link, with survey design information), adjusting for demographics (age, gender, race/ethnicity), socioeconomic factors (income, education, Social Security Disability Insurance disability, urban/rural), census region, health insurance, and self-reported medical conditions. We also conducted sensitivity analyses as a robustness check for these modeling assumptions. RESULTS: A total of 4447 participants (2567 women and 1880 men) were enrolled in the study, mean (SE) age, 42.7 (0.5) years; 1889 were SNAP participants, and 2558 were not. Compared with other low-income adults, SNAP participants were younger (mean [SE] age, 40.3 [0.6] vs 44.1 [0.7] years), more likely to have public insurance or be uninsured (84.9% vs 67.7%), and more likely to be disabled (24.2% vs 10.6%) (P < .001 for all). In age- and gender-adjusted models, health care expenditures between those who did and did not participate in SNAP were similar (difference, 1097 to 1409; 95% CI, −125). Sensitivity analyses were consistent with these results, also indicating that SNAP participation was associated with significantly lower estimated expenditures. CONCLUSIONS AND RELEVANCE: SNAP enrollment is associated with reduced health care spending among low-income American adults, a finding consistent across several analytic approaches. Encouraging SNAP enrollment among eligible adults may help reduce health care costs in the United States
Revisiting Absorbing Phase Transition in Energy Exchange Models
A recent study of conserved Manna model, with both discrete and continuous
variable, indicates that absorbing phase transitions therein belong to the
directed percolation (DP) universality class. In this context we revisit
critical behaviour in energy exchange models with a threshold. Contrary to the
previous claims [PRE 83, 061130 (2011), arXiv:1102.1631], our results indicate
that both the maximal and minimal versions of this model belong to the DP
class.Comment: 8 pages, 7 eps figure
At the horizon of a supersymmetric AdS_5 black hole: Isometries and half-BPS giants
The near-horizon geometry of an asymptotically AdS_5 supersymmetric black
hole discovered by Gutowski and Reall is analysed. After lifting the solution
to 10 dimensions, we explicitly solve the Killing spinor equations in both
Poincare and global coordinates. It is found that exactly four supersymmetries
are preserved which is twice the number for the full black hole. The full set
of isometries is constructed and the isometry supergroup is shown to be
SU(1,1|1) X SU(2) X U(3). We further study half-BPS configurations of D3-branes
in the near-horizon geometry in Poincare and global coordinates. Both giant
graviton probes and dual giant graviton probes are found.Comment: 26 pages. v2:Typos corrected, minor change
Effect of cross-linked biodegradable polymers on sustained release of sodium diclofenac-loaded microspheres
The objective of this study was to formulate an oral sustained release delivery system of sodium diclofenac(DS) based on sodium alginate (SA) as a hydrophilic carrier in combination with chitosan (CH) and sodium carboxymethyl cellulose (SCMC) as drug release modifiers to overcome the drug-related adverse effects and to improve bioavailability. Microspheres of DS were prepared using an easy method of ionotropic gelation. The prepared beads were evaluated for mean particle size, entrapment efficiency, swelling capacity, erosion and in-vitro drug release. They were also subjected to various studies such as Fourier Transform Infra-Red Spectroscopy (FTIR) for drug polymer compatibility, Scanning Electron Microscopy for surface morphology, X-ray Powder Diffraction Analysis (XRD) and Differential Scanning Calorimetric Analysis (DSC) to determine the physical state of the drug in the beads. The addition of SCMC during the preparation of polymeric beads resulted in lower drug loading and prolonged release of the DS. The release profile of batches F5 and F6 showed a maximum drug release of 96.97 ± 0.356% after 8 h, in which drug polymer ratio was decreased. The microspheres of sodium diclofenac with the polymers were formulated successfully. Analysis of the release profiles showed that the data corresponds to the diffusion-controlled mechanism as suggested by Higuchi
Classical Simulation of Relativistic Quantum Mechanics in Periodic Optical Structures
Spatial and/or temporal propagation of light waves in periodic optical
structures offers a rather unique possibility to realize in a purely classical
setting the optical analogues of a wide variety of quantum phenomena rooted in
relativistic wave equations. In this work a brief overview of a few optical
analogues of relativistic quantum phenomena, based on either spatial light
transport in engineered photonic lattices or on temporal pulse propagation in
Bragg grating structures, is presented. Examples include spatial and temporal
photonic analogues of the Zitterbewegung of a relativistic electron, Klein
tunneling, vacuum decay and pair-production, the Dirac oscillator, the
relativistic Kronig-Penney model, and optical realizations of non-Hermitian
extensions of relativistic wave equations.Comment: review article (invited), 14 pages, 7 figures, 105 reference
Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run
Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society
Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017
A double burden of malnutrition occurs when individuals, household members or communities experience both undernutrition and overweight. Here, we show geospatial estimates of overweight and wasting prevalence among children under 5 years of age in 105 low- and middle-income countries (LMICs) from 2000 to 2017 and aggregate these to policy-relevant administrative units. Wasting decreased overall across LMICs between 2000 and 2017, from 8.4 (62.3 (55.1�70.8) million) to 6.4 (58.3 (47.6�70.7) million), but is predicted to remain above the World Health Organization�s Global Nutrition Target of <5 in over half of LMICs by 2025. Prevalence of overweight increased from 5.2 (30 (22.8�38.5) million) in 2000 to 6.0 (55.5 (44.8�67.9) million) children aged under 5 years in 2017. Areas most affected by double burden of malnutrition were located in Indonesia, Thailand, southeastern China, Botswana, Cameroon and central Nigeria. Our estimates provide a new perspective to researchers, policy makers and public health agencies in their efforts to address this global childhood syndemic. © 2020, The Author(s)
- …