41 research outputs found

    Three Dimensional N=2 Supersymmetry on the Lattice

    Full text link
    We show how 3-dimensional, N=2 supersymmetric theories, including super QCD with matter fields, can be put on the lattice with existing techniques, in a way which will recover supersymmetry in the small lattice spacing limit. Residual supersymmetry breaking effects are suppressed in the small lattice spacing limit by at least one power of the lattice spacing a.Comment: 21 pages, 2 figures, typo corrected, reference adde

    Relativistic effects and primordial non-Gaussianity in the galaxy bias

    Get PDF
    When dealing with observables, one needs to generalize the bias relation between the observed galaxy fluctuation field to the underlying matter distribution in a gauge-invariant way. We provide such relation at second-order in perturbation theory adopting the local Eulerian bias model and starting from the observationally motivated uniform-redshift gauge. Our computation includes the presence of primordial non-Gaussianity. We show that large scale-dependent relativistic effects in the Eulerian bias arise independently from the presence of some primordial non-Gaussianity. Furthermore, the Eulerian bias inherits from the primordial non-Gaussianity not only a scale-dependence, but also a modulation with the angle of observation when sources with different biases are correlated.Comment: 12 pages, LaTeX file; version accepted for publication in JCA

    On Smooth Time-Dependent Orbifolds and Null Singularities

    Get PDF
    We study string theory on a non-singular time-dependent orbifold of flat space, known as the `null-brane'. The orbifold group, which involves only space-like identifications, is obtained by a combined action of a null Lorentz transformation and a constant shift in an extra direction. In the limit where the shift goes to zero, the geometry of this orbifold reproduces an orbifold with a light-like singularity, which was recently studied by Liu, Moore and Seiberg (hep-th/0204168). We find that the backreaction on the geometry due to a test particle can be made arbitrarily small, and that there are scattering processes which can be studied in the approximation of a constant background. We quantize strings on this orbifold and calculate the torus partition function. We construct a basis of states on the smooth orbifold whose tree level string interactions are nonsingular. We discuss the existence of physical modes in the singular orbifold which resolve the singularity. We also describe another way of making the singular orbifold smooth which involves a sandwich pp-wave.Comment: 24 pages, one figur

    Prospects for e+e- physics at Frascati between the phi and the psi

    Get PDF
    We present a detailed study, done in the framework of the INFN 2006 Roadmap, of the prospects for e+e- physics at the Frascati National Laboratories. The physics case for an e+e- collider running at high luminosity at the phi resonance energy and also reaching a maximum center of mass energy of 2.5 GeV is discussed, together with the specific aspects of a very high luminosity tau-charm factory. Subjects connected to Kaon decay physics are not discussed here, being part of another INFN Roadmap working group. The significance of the project and the impact on INFN are also discussed. All the documentation related to the activities of the working group can be found in http://www.roma1.infn.it/people/bini/roadmap.html.Comment: INFN Roadmap Report: 86 pages, 25 figures, 9 table
    corecore