1,114 research outputs found
Field and angular dependence of the Sommerfeld coefficient in Al-doped MgB2 single crystals
International audienceThe angular and field dependence of the Sommerfeld coefficient = lim Cel /T Tâ0 Cel being the electronic contribution to the specific heat has been measured in Al-doped MgB2 single crystals for x=0, x=0.1, and x 0.2 . We show that the decomposition previously introduced to describe H, where is the angle between the applied field and the c axis in pure samples Phys. Rev. Lett. 98, 137001 2007 is well adapted to doped samples: e.g., the contribution of the band to the specific heat is proportional to B/Bc2 whereas the contribution of the band is isotropic but highly nonlinear in field. We hence present the evolution of the coherence lengths of the two bands and corresponding Fermi velocities with doping
Directed geometrical worm algorithm applied to the quantum rotor model
We discuss the implementation of a directed geometrical worm algorithm for
the study of quantum link-current models. In this algorithm Monte Carlo updates
are made through the biased reptation of a worm through the lattice. A directed
algorithm is an algorithm where, during the construction of the worm, the
probability for erasing the immediately preceding part of the worm, when adding
a new part,is minimal. We introduce a simple numerical procedure for minimizing
this probability. The procedure only depends on appropriately defined local
probabilities and should be generally applicable. Furthermore we show how
correlation functions, C(r,tau) can be straightforwardly obtained from the
probability of a worm to reach a site (r,tau) away from its starting point
independent of whether or not a directed version of the algorithm is used.
Detailed analytical proofs of the validity of the Monte Carlo algorithms are
presented for both the directed and un-directed geometrical worm algorithms.
Results for auto-correlation times and Green functions are presented for the
quantum rotor model.Comment: 11 pages, 9 figures, v2 : Additional results and data calculated at
an incorrect chemical potential replaced. Conclusions unchange
Recommended from our members
Conceptual Design Studies of the KSTAR Bay-Nm Cassette and Thomson Scattering Optics
A Multi-Channel Thomson Scattering System viewing the edge and core of the KSTAR plasma will be installed at the mid-plane port Bay-N. An engineering design study was undertaken at PPPL in collaboration with the Korea Basic Science Institute (KBSI) to determine the optimal optics and cassette design. Design criteria included environmental, mechanical and optical factors. All of the optical design options have common design features; the Thomson Scattering laser, an in-vacuum shutter, a quartz heat shield and primary vacuum window, a set of optical elements and a fiber optic bundle. Neutron radiation damage was a major factor in the choice of competing lens-based and mirror-based optical designs. Both the mirror based design and the lens design are constrained by physical limits of the Bay-N cassette and interference with the Bay-N micro-wave launcher. The cassette will contain the optics and a rail system for maintenance of the optics
Synchronization in a System of Globally Coupled Oscillators with Time Delay
We study the synchronization phenomena in a system of globally coupled
oscillators with time delay in the coupling. The self-consistency equations for
the order parameter are derived, which depend explicitly on the amount of
delay. Analysis of these equations reveals that the system in general exhibits
discontinuous transitions in addition to the usual continuous transition,
between the incoherent state and a multitude of coherent states with different
synchronization frequencies. In particular, the phase diagram is obtained on
the plane of the coupling strength and the delay time, and ubiquity of
multistability as well as suppression of the synchronization frequency is
manifested. Numerical simulations are also performed to give consistent
results
Domain growth and aging scaling in coarsening disordered systems
Using extensive Monte Carlo simulations we study aging properties of two
disordered systems quenched below their critical point, namely the
two-dimensional random-bond Ising model and the three-dimensional
Edwards-Anderson Ising spin glass with a bimodal distribution of the coupling
constants. We study the two-times autocorrelation and space-time correlation
functions and show that in both systems a simple aging scenario prevails in
terms of the scaling variable , where is the time-dependent
correlation length, whereas is the waiting time and is the observation
time. The investigation of the space-time correlation function for the
random-bond Ising model allows us to address some issues related to
superuniversality.Comment: 8 pages, 9 figures, to appear in European Physical Journal
Tracking Performance of the Scintillating Fiber Detector in the K2K Experiment
The K2K long-baseline neutrino oscillation experiment uses a Scintillating
Fiber Detector (SciFi) to reconstruct charged particles produced in neutrino
interactions in the near detector. We describe the track reconstruction
algorithm and the performance of the SciFi after three years of operation.Comment: 24pages,18 figures, and 1 table. Preprint submitted to NI
Search for sterile neutrino oscillation using RENO and NEOS data
We present a reactor model independent search for sterile neutrino
oscillation using 2\,509\,days of RENO near detector data and 180 days of NEOS
data. The reactor related systematic uncertainties are significantly suppressed
as both detectors are located at the same reactor complex of Hanbit Nuclear
Power Plant. The search is performed by electron
antineutrino\,() disappearance between six reactors and two
detectors with baselines of 294\,m\,(RENO) and 24\,m\,(NEOS). A spectral
comparison of the NEOS prompt-energy spectrum with a no-oscillation prediction
from the RENO measurement can explore reactor oscillations
to sterile neutrino. Based on the comparison, we obtain a 95\% C.L. excluded
region of \,eV. We also obtain a 68\% C.L. allowed
region with the best fit of \,eV and
=0.080.03 with a p-value of 8.2\%. Comparisons of
obtained reactor antineutrino spectra at reactor sources are made among RENO,
NEOS, and Daya Bay to find a possible spectral variation.Comment: 6 pages, 5 figures: This manuscript has been significantly revised by
the joint reanalysis by RENO and NEOS Collaborations. (In the previous
edition, the RENO collaboration used publicly available NEOS data to evaluate
the expected neutrino spectrum at NEOS.
Bio-orthogonal Supramolecular Latching inside Live Animals and Its Application for in Vivo Cancer Imaging
© 2019 American Chemical Society.Here, we demonstrate a supramolecular latching tool for bio-orthogonal noncovalent anchoring of small synthetic molecules in live animal models using a fully synthetic high-affinity binding pair between cucurbit[7]uril (CB[7]) and adamantylammonium (AdA). This supramolecular latching system is small (âŒ1 kDa), ensuring efficient uptake into cells, tissues, and whole organisms. It is also chemically robust and resistant to enzymatic degradation and analogous to well-characterized biological systems in terms of noncovalent binding. Occurrence of fluorescence resonance energy transfer (FRET) between cyanine 3-CB[7] (Cy3-CB[7]) and boron-dipyrromethene 630/650X-AdA (BDP630/650-AdA) inside a live worm (Caenorhabditis elegans) indicates efficient in situ high-affinity association between AdA and CB[7] inside live animals. In addition, selective visualization of a cancer site of a live mouse upon supramolecular latching of cyanine 5-AdA (Cy5-AdA) on prelocalized CB[7]-conjugating antibody on the cancer site demonstrates the potential of this synthetic system for in vivo cancer imaging. These findings provide a fresh insight into the development of new chemical biology tools and medical therapeutic systems11sciescopu
First measurement of direct photoproduction on the proton
We report on the results of the first measurement of exclusive
meson photoproduction on protons for GeV and GeV. Data were collected with the CLAS detector at the Thomas
Jefferson National Accelerator Facility. The resonance was detected via its
decay in the channel by performing a partial wave analysis of the
reaction . Clear evidence of the meson
was found in the interference between and waves at GeV. The -wave differential cross section integrated in the mass range of
the was found to be a factor of 50 smaller than the cross section
for the meson. This is the first time the meson has been
measured in a photoproduction experiment
- âŠ