1,949 research outputs found

    Impact of aging mechanism on model simulated carbonaceous aerosols

    Get PDF
    Carbonaceous aerosols including organic carbon and black carbon have significant implications for both climate and air quality. In the current global climate or chemical transport models, a fixed hydrophobic-to-hydrophilic conversion lifetime for carbonaceous aerosol (τ) is generally assumed, which is usually around one day. We have implemented a new detailed aging scheme for carbonaceous aerosols in a chemical transport model (GEOS-Chem) to account for both the chemical oxidation and the physical condensation-coagulation effects, where τ is affected by local atmospheric environment including atmospheric concentrations of water vapor, ozone, hydroxyl radical and sulfuric acid. The updated τ exhibits large spatial and temporal variations with the global average (up to 11 km altitude) calculated to be 2.6 days. The chemical aging effects are found to be strongest over the tropical regions driven by the low ozone concentrations and high humidity there. The τ resulted from chemical aging generally decreases with altitude due to increases in ozone concentration and decreases in humidity. The condensation-coagulation effects are found to be most important for the high-latitude areas, in particular the polar regions, where the τ values are calculated to be up to 15 days. When both the chemical aging and condensation-coagulation effects are considered, the total atmospheric burdens and global average lifetimes of BC, black carbon, (OC, organic carbon) are calculated to increase by 9% (3%) compared to the control simulation, with considerable enhancements of BC and OC concentrations in the Southern Hemisphere. Model evaluations against data from multiple datasets show that the updated aging scheme improves model simulations of carbonaceous aerosols for some regions, especially for the remote areas in the Northern Hemisphere. The improvement helps explain the persistent low model bias for carbonaceous aerosols in the Northern Hemisphere reported in literature. Further model sensitivity simulations focusing on the continental outflow of carbonaceous aerosols demonstrate that previous studies using the old aging scheme could have significantly underestimated the intercontinental transport of carbonaceous aerosols

    Finite Element Analysis of the Displacement Adjustment Scheme for Column Bases of a 10000 m3 Spherical Tank During Whole-body Heat Treatment

    Get PDF
    AbstractThe stress of spherical tank and displacement of column bases were calculated by finite element method, considering the uneven gravity loads on support columns which was caused by manufacturing and setting errors. The preliminary displacement adjustment scheme for column bases was made, according to the safety range of column bases displacement which was determined by the maximum stress restricted by allowable stress at the set heat treatment temperatures. The final scheme was made after checking the preliminary scheme. The method of making adjustment scheme of column bases for a 10000m3 spherical tank during the whole-body heat treatment may provide a reference for other large spherical tank

    Decline of Yangtze River water and sediment discharge: Impact from natural and anthropogenic changes

    Get PDF
    The increasing impact of both climatic change and human activities on global river systems necessitates an increasing need to identify and quantify the various drivers and their impacts on fluvial water and sediment discharge. Here we show that mean Yangtze River water discharge of the first decade after the closing of the Three Gorges Dam (TGD) (2003-2012) was 67 km(3)/yr (7%) lower than that of the previous 50 years (1950-2002), and 126 km(3)/yr less compared to the relatively wet period of pre-TGD decade (1993-2002). Most (60-70%) of the decline can be attributed to decreased precipitation, the remainder resulting from construction of reservoirs, improved water-soil conservation and increased water consumption. Mean sediment flux decreased by 71% between 1950-1968 and the post-TGD decade, about half of which occurred prior to the pre-TGD decade. Approximately 30% of the total decline and 65% of the decline since 2003 can be attributed to the TGD, 5% and 14% of these declines to precipitation change, and the remaining to other dams and soil conservation within the drainage basin. These findings highlight the degree to which changes in riverine water and sediment discharge can be related with multiple environmental and anthropogenic factors

    A combined methodology for reconstructing source-to-sink basin evolution, exemplified by the Triassic Songpan–Ganzi basin, central China

    Get PDF
    Source-to-sink evolution of a basin is a key to understand sedimentary processes, especially in a complex regional orogenic setting. Detrital zircon populations can be traced from their primary sources to their depositional settings. The resulting interpretations are enhanced by calculation of the adjacent orogen's paleoaltimetry, which provides additional insights into paleogeography. In this study, we present a combined methodology which aims to reconstruct source-to-sink evolution by the analysis of detrital zircon age distribution in sandstones, together with the calculation of paleo-elevation of surrounding orogens based on the chemical compositions of coeval magmatic rocks. We test the method using detrital zircon U–Pb geochronological data sets from the Triassic Songpan–Ganzi basin in central China, combined with whole-rock geochemical data from intermediate-composition magmatic rocks in adjacent crustal blocks. Application of the combined methodology supports a syn-collisional basin model for the formation of the Triassic Songpan-Ganzi basin in preference to a continental back-arc basin. The clastic sediments, mainly deep-marine turbidites, accumulated in a remnant Paleotethyan Ocean that was surrounded by the converging North China Block, South China Block, East Kunlun Orogenic Belt and the Qiangtang Block. The North China Block and the North Qaidam Block were major proto-sources of detrital zircons to the basin, contributing on average 12 % and 15 %, respectively. Triassic magmatic rocks in the East Kunlun and Qiangtang regions were major sources of igneous zircons, up to 68 % for the former and up to 56 % for the latter. Despite being located at a calculated elevation of ca. 4000 m, the Qinling Orogenic Belt contributed only ca. <10 % of the zircons, mostly restricted to the eastern depocenter of the basin. In contrast, supply from the North Qiangtang Block, despite its calculated lower elevation (1000–3000 m), accounts for 2–10 % of the detrital zircons in the basin, suggesting high erosion rates of this block. The minimal supply of zircons from the South China Block, restricted to 3–6 % in the central and western depocenters, is inconsistent with the zircon abundances predicted in the alternative back-arc basin model of the Songpan–Ganzi basin

    Designing of a Fleet-Leader Program for Carbon Composite Overwrapped Pressure Vessels

    Get PDF
    Composite Overwrapped Pressure Vessels (COPVs) are often used for storing pressurant gases on board spacecraft when mass saving is a prime requirement. Substantial weight savings can be achieved compared to all metallic pressure vessels. For example, on the space shuttle, replacement of all metallic pressure vessels with Kevlar COPVs resulted in a weight savings of about 30 percent. Mass critical space applications such as the Ares and Orion vehicles are currently being planned to use as many COPVs as possible in place of all-metallic pressure vessels to minimize the overall mass of the vehicle. Due to the fact that overwraps are subjected to sustained loads during long periods of a mission, stress rupture failure is a major concern. It is, therefore, important to ascertain the reliability of these vessels by analysis, since it is practically impossible to show by experimental testing the reliability of flight quality vessels. Also, it is a common practice to set aside flight quality vessels as "fleet leaders" in a test program where these vessels are subjected to slightly accelerated operating conditions so that they lead the actual flight vessels both in time and load. The intention of fleet leaders is to provide advanced warning if there is a serious design flaw in the vessels so that a major disaster in the flight vessels can be averted with advance warning. On the other hand, the accelerating conditions must be not so severe as to be prone to false alarms. The primary focus of the present paper is to provide an analytical basis for designing a viable fleet leader program for carbon COPVs. The analysis is based on a stress rupture behavior model incorporating Weibull statistics and power-law sensitivity of life to fiber stress level

    Higher Order Effects in the Dielectric Constant of Percolative Metal-Insulator Systems above the Critical Point

    Full text link
    The dielectric constant of a conductor-insulator mixture shows a pronounced maximum above the critical volume concentration. Further experimental evidence is presented as well as a theoretical consideration based on a phenomenological equation. Explicit expressions are given for the position of the maximum in terms of scaling parameters and the (complex) conductances of the conductor and insulator. In order to fit some of the data, a volume fraction dependent expression for the conductivity of the more highly conductive component is introduced.Comment: 4 pages, Latex, 4 postscript (*.epsi) files submitted to Phys Rev.

    Merging binary black holes formed through double-core evolution

    Get PDF
    Context. To date, various formation channels of merging events have been heavily explored with the detection of nearly 100 double black hole (BH) merger events reported by the LIGO-Virgo-KAGRA (LVK) Collaboration. In this paper, we systematically investigate an alternative formation scenario: binary BHs (BBHs) formed through double helium stars (hereafter, “double-core evolution channel”). In this scenario, two helium stars (He-rich stars) could be the outcome of the classical isolated binary evolution scenario with and without the common envelope (CE) phase (i.e., CE channel and stable mass transfer channel) or, alternatively, of massive close binaries evolving chemically homogeneously (i.e., CHE channel). Aims. We study the properties (i.e., the chirp masses and the effective spins) of BBHs formed through the double-core evolution and investigate the impact of different efficiencies of angular momentum transport within massive He-rich stars on double-core evolution. Methods. We performed detailed stellar structure and binary evolution calculations that take into account internal rotation and mass loss of He-rich stars as well as tidal interactions in binaries. We systematically studied the parameter space of initial binary He-rich stars, including the initial mass and metallicity of He-rich stars as well as initial orbital periods. Apart from direct core collapse with mass and angular momentum conserved, we also follow the framework in Batta & Ramirez-Ruiz (2019, ArXiv e-prints [arXiv:1904.04835]) to estimate the mass and spin of the resulting BHs. Results. We show that the radii of massive He-rich stars decrease as a function of time, which comes mainly from mass loss and mixing in high metallicity and from mixing in low metallicity. For double He-rich stars with equal masses in binaries, we find that tides start to be at work on the zero age helium main sequence (i.e., the time when a He-rich star starts to burn helium in the core, which is analogous to zero age main sequence for core hydrogen burning) for initial orbital periods not longer than 1.0 day, depending on the initial metallicities. In addition to the stellar mass-loss rate and tidal interactions in binaries, we find that the role of the angular momentum transport efficiency in determining the resulting BH spins becomes stronger when considering BH progenitors originated from a higher metal-metallicity environment. We highlight that the double-core evolution scenario does not always produce fast-spinning BBHs and compare the properties of the BBHs reported from the LVK with our modeling. Conclusions. After detailed binary calculations of double-core evolution, we have confirmed that the spin of the BH is not only determined by the interplay of the binary’s different initial conditions (metallicity, mass, and orbital period) but is also dependent on the angular momentum transport efficiency within its progenitor. We predict that with the sensitivity improvements to the LVK’s next observing run (O4), the sample of merging BBHs will contain more sources with positive but moderate (even high) χeff and part of the events will likely show to have been formed through the double-core evolution channel
    corecore