17,413 research outputs found

    Stock assessment of Lates niloticus (L.), Oreochromis niloticus (L.) and Rastrineobola argentea (Pellegrin) using fishery dependent data from the Tanzanian waters of Lake Victoria

    Get PDF
    Catch data were collected from three beaches in the Mwanza area of lake Victoria, Tanzania for Oreochromis niloticus (L.), Rastrineobola argentea (Pellegrin) and Lates niloticus (L.). Sampling took place in October 1997 and February, June and September 1998. The CPUE for O. niloticus was 3.9 to 6kg boat super(-1) and for R. argentea from 98 to 282 kg boat super(-1). There was no obvious trend in catch rates for L. niloticus. The modal length for O. niloticus recorded at Chole beach was 34cm TL. In February, fish were larger (41-45 cm) than in the other surveys. Rastrineobola argentea caught in October 1997 had modal length at 65 mm TL with some smaller fish. In February and June prominent length modes occurred at 45 and 58 mm respectively, which may represent the same cohort as the small fish caught in October 1997. In September 1998, there were two length modes at 46 and 60 mm. The 60 mm fish may represent the same cohort seen in previous surveys, suggesting growth from approximately 30 mm to 60 mm in an eleven-month period. Lates niloticus landed at Kayenze beach over the four surveys had a modal length of 46 cm TL. Fish species encountered on the three beaches during the surveys were O. niloticus, R. argentea, Bagrus docmak Forsskall, Clarias gariepinus (Burchell), Protopterus aethiopicus Heckel, Labeo victorians Boulenger, Synodontis afrofischeri Hilgendorf, Synodontis victoriae Boulanger, Schilbe intermedius (L.), Brycinus jacksonii (Boulanger), Mormyrus kannume Forsskall and Haplochromine cichlid

    Arrow of time in a recollapsing quantum universe

    Full text link
    We show that the Wheeler-DeWitt equation with a consistent boundary condition is only compatible with an arrow of time that formally reverses in a recollapsing universe. Consistency of these opposite arrows is facilitated by quantum effects in the region of the classical turning point. Since gravitational time dilation diverges at horizons, collapsing matter must then start re-expanding ``anticausally" (controlled by the reversed arrow) before horizons or singularities can form. We also discuss the meaning of the time-asymmetric expression used in the definition of ``consistent histories". We finally emphasize that there is no mass inflation nor any information loss paradox in this scenario.Comment: Many conceptual clarifications include

    High-dynamic-range imaging optical detectors

    Get PDF
    Imaging spectrometers allowing spatially resolved targets to be spectrally discriminated are valuable for remote sensing and defense applications. The drawback of such instruments is the need to quickly process very large amounts of data. In this paper we demonstrate two imaging systems which detect a dim target in a bright background, using the coherence contrast between them, generating much less data but only operating over a limited optical bandwidth. Both systems use a passband filter, a Michelson interferometer, coupling optics and a CCD camera. The first uses the interferometer in a spatial mode, by tilting one of the mirrors to create a set of line fringes on the CCD array. The visibility of these fringes is proportional to the degree of coherence. The interferogram is displayed spatially on the CCD array, as a function of the path differences. The second system uses the interferometer in a temporal mode. A coherent point target and an extended background are imaged through the interferometer onto the CCD array, and one of the interferometer's mirrors is scanned longitudinally to vary the path difference in time. In both cases the coherent target is detected over a large dynamic range down to negative signal-to-background power ratios (in dB). The paper describes an averaging technique to improve the signal-to-noise ratio and correction techniques required to extract interferograms from the images. The spatial technique developed has the advantage of using no moving parts

    Decoherence: Concepts and Examples

    Get PDF
    We give a pedagogical introduction to the process of decoherence - the irreversible emergence of classical properties through interaction with the environment. After discussing the general concepts, we present the following examples: Localisation of objects, quantum Zeno effect, classicality of fields and charges in QED, and decoherence in gravity theory. We finally emphasise the important interpretational features of decoherence.Comment: 24 pages, LATEX, 9 figures, needs macro lamuphys.sty, to appear in the Proceedings of the 10th Born Symposiu

    Neural correlates of processing valence and arousal in affective words

    Get PDF
    Psychological frameworks conceptualize emotion along 2 dimensions, "valence" and "arousal." Arousal invokes a single axis of intensity increasing from neutral to maximally arousing. Valence can be described variously as a bipolar continuum, as independent positive and negative dimensions, or as hedonic value (distance from neutral). In this study, we used functional magnetic resonance imaging to characterize neural activity correlating with arousal and with distinct models of valence during presentation of affective word stimuli. Our results extend observations in the chemosensory domain suggesting a double dissociation in which subregions of orbitofrontal cortex process valence, whereas amygdala preferentially processes arousal. In addition, our data support the physiological validity of descriptions of valence along independent axes or as absolute distance from neutral but fail to support the validity of descriptions of valence along a bipolar continuum

    The basis problem in many-worlds theories

    Get PDF
    It is emphasized that a many-worlds interpretation of quantum theory exists only to the extent that the associated basis problem is solved. The core basis problem is that the robust enduring states specified by environmental decoherence effects are essentially Gaussian wave packets that form continua of non-orthogonal states. Hence they are not a discrete set of orthogonal basis states to which finite probabilities can be assigned by the usual rules. The natural way to get an orthogonal basis without going outside the Schroedinger dynamics is to use the eigenstates of the reduced density matrix, and this idea is the basis of some recent attempts by many-worlds proponents to solve the basis problem. But these eigenstates do not enjoy the locality and quasi-classicality properties of the states defined by environmental decoherence effects, and hence are not satisfactory preferred basis states. The basis problem needs to be addressed and resolved before a many-worlds-type interpretation can be said to exist.Comment: This extended version is to be published in The Canadian Journal of Physic

    On the Lipschitz continuity of spectral bands of Harper-like and magnetic Schroedinger operators

    Full text link
    We show for a large class of discrete Harper-like and continuous magnetic Schrodinger operators that their band edges are Lipschitz continuous with respect to the intensity of the external constant magnetic field. We generalize a result obtained by J. Bellissard in 1994, and give examples in favor of a recent conjecture of G. Nenciu.Comment: 15 pages, accepted for publication in Annales Henri Poincar

    Telomeric NAP1L4 and OSBPL5 of the KCNQ1 cluster, and the DECORIN gene are not imprinted in human trophoblast stem cells

    Get PDF
    Background: Genomic imprinting of the largest known cluster, the Kcnq1/KCNQ1 domain on mChr7/hChr11, displays significant differences between mouse and man. Of the fourteen transcripts in this cluster, imprinting of six is ubiquitous in mice and humans, however, imprinted expression of the other eight transcripts is only found in the mouse placenta. The human orthologues of the latter eight transcripts are biallelically expressed, at least from the first trimester onwards. However, as early development is less divergent between species, placental specific imprinting may be present in very early gestation in both mice and humans. Methodology/Principal Findings: Human embryonic stem (hES) cells can be differentiated to embryoid bodies and then to trophoblast stem (EB-TS) cells. Using EB-TS cells as a model of post-implantation invading cytotrophoblast, we analysed allelic expression of two telomeric transcripts whose imprinting is placental specific in the mouse, as well as the ncRNA KCNQ1OT1, whose imprinted expression is ubiquitous in early human and mouse development. KCNQ1OT1 expression was monoallelic in all samples but OSBPL5 and NAP1L4 expression was biallelic in EB-TS cells, as well as undifferentiated hES cells and first trimester human fetal placenta. DCN on hChr12, another gene imprinted in the mouse placenta only, was also biallelically expressed in EB-TS cells. The germline maternal methylation imprint at the KvDMR was maintained in both undifferentiated hES cells and EB-TS cells. Conclusions/Significance: The question of placental specific imprinting in the human has not been answered fully. Using a model of human trophoblast very early in gestation we show a lack of imprinting of two telomeric genes in the KCNQ1 region and of DCN, whose imprinted expression is placental specific in mice, providing further evidence to suggest that humans do not exhibit placental specific imprinting. The maintenance of both differential methylation of the KvDMR and monoallelic expression of KCNQ1OT1 indicates that the region is appropriately regulated epigenetically in vitro. Human gestational load is less than in the mouse, resulting in reduced need for maternal resource competition, and therefore maybe also a lack of placental specific imprinting. If genomic imprinting exists to control fetal acquisition of maternal resources driven by the placenta, placenta-specific imprinting may be less important in the human than the mouse
    corecore