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Abstract

Background: Genomic imprinting of the largest known cluster, the Kcnq1/KCNQ1 domain on mChr7/hChr11, displays
significant differences between mouse and man. Of the fourteen transcripts in this cluster, imprinting of six is ubiquitous in
mice and humans, however, imprinted expression of the other eight transcripts is only found in the mouse placenta. The
human orthologues of the latter eight transcripts are biallelically expressed, at least from the first trimester onwards.
However, as early development is less divergent between species, placental specific imprinting may be present in very early
gestation in both mice and humans.

Methodology/Principal Findings: Human embryonic stem (hES) cells can be differentiated to embryoid bodies and then to
trophoblast stem (EB-TS) cells. Using EB-TS cells as a model of post-implantation invading cytotrophoblast, we analysed
allelic expression of two telomeric transcripts whose imprinting is placental specific in the mouse, as well as the ncRNA
KCNQ1OT1, whose imprinted expression is ubiquitous in early human and mouse development. KCNQ1OT1 expression was
monoallelic in all samples but OSBPL5 and NAP1L4 expression was biallelic in EB-TS cells, as well as undifferentiated hES cells
and first trimester human fetal placenta. DCN on hChr12, another gene imprinted in the mouse placenta only, was also
biallelically expressed in EB-TS cells. The germline maternal methylation imprint at the KvDMR was maintained in both
undifferentiated hES cells and EB-TS cells.

Conclusions/Significance: The question of placental specific imprinting in the human has not been answered fully. Using a
model of human trophoblast very early in gestation we show a lack of imprinting of two telomeric genes in the KCNQ1

region and of DCN, whose imprinted expression is placental specific in mice, providing further evidence to suggest that
humans do not exhibit placental specific imprinting. The maintenance of both differential methylation of the KvDMR and
monoallelic expression of KCNQ1OT1 indicates that the region is appropriately regulated epigenetically in vitro. Human
gestational load is less than in the mouse, resulting in reduced need for maternal resource competition, and therefore
maybe also a lack of placental specific imprinting. If genomic imprinting exists to control fetal acquisition of maternal
resources driven by the placenta, placenta-specific imprinting may be less important in the human than the mouse.
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Introduction

Genomic imprinting is the epigenetic phenomenon of parent-of-

origin dependent monoallelic expression. It is conserved among

placental mammals and comprehensive data exists on imprinting in

the mouse and human (http://igc.otago.ac.nz; http://www.har.mrc.

ac.uk/research/genomic_imprinting/maps.html). Appropriate ex-

pression of imprinted genes is vital during fetal development and

their disruption results in congenital disorders, primarily of growth

and neurological development [1]. The phenotypes displayed by

mutant mousemodels and human syndromes associated with a loss of

imprinting of certain genes demonstrate, in many cases, conservation

of imprinted gene function and regulation between mouse and man

[2,3]. The large imprinted Kcnq1/KCNQ1 domain on mChr7/

hChr11 is a notable exception to this.

At Kcnq1/KCNQ1 in both mice and humans, maternal DNA

methylation of the promoter (KvDMR) of a non-coding RNA,

Kcnq1ot1/KCNQ1OT1, leads to its paternal-specific expression [4].

Kcnq1ot1/KCNQ1OT1 transcripts recruit polycomb-group com-

plexes, mediating repressive histone modification on the paternal

allele, repressing the surrounding genes in cis [5–7]. Imprinting at

this domain is tissue specific. On the maternal allele in the mouse

embryo, the absence of repressive chromatin allows expression of

the five genes immediately centromeric to Kcnq1ot1. In the mouse

placenta, the repressive chromatin domain formed by Kcnq1ot1

transcripts is larger than in the embryo, and encompasses an
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additional eight flanking genes, resulting in maternal specific

expression of a total of 13 transcripts [8]. In humans, only

imprinting of the five central genes is evolutionarily conserved, and

the eight flanking genes are expressed biallelically in the placenta

[9]. This arrangement is consistent with differential methylation of

the human KvDMR, paternal KCNQ1OT1 expression and

enrichment of repressive histone marks on the paternal allele at

the central genes only [9].

This lack of conservation is not limited to the KCNQ1 region.

DECORIN (DCN; hChr12/mChr10) is an isolated imprinted gene,

not associated with other imprinted transcripts. In the mouse, Dcn

is ubiquitously expressed in embryos but its maternal-specific

expression is limited to the placenta [10]. In human first trimester

and term placenta, DCN expression is biallelic [9].

Early placentation events are more similar between phyloge-

netically divergent species than late ones. Gene expression profiles

of the mouse placenta between E8.5 and E10.5 are characterised

by evolutionarily ancient genes, common between different

species, including humans. Expression profiles then gradually

transfer to newer genes during mid to late gestation. By E15, the

expression profile of the mouse placenta is enriched for rodent

specific gene expression, and the human for primate specific gene

expression [11]. Similarities restricted to early human and mouse

gestation could include the phenomenon of placental specific

imprinting, and therefore require analysis of early placental

development.

Human embryonic stem (hES) cells have recently emerged as a

useful model for placental development, providing the potential to

study both the emergence of trophoblast from a precursor

population and subsequent differentiation of these cells [12].

Conflict between paternal and maternal resources during

pregnancy is thought, at least in some cases, to drive imprinting

of genes [13]. The invasive character of endovascular trophoblast,

and the direct contact of villous cytotrophoblast with the maternal

bloodstream places these cells at the forefront of this conflict.

Human trophoblast stem cells can be derived from hES cells

following embryoid body formation (EB-TS cells). EB-TS cells are

capable of differentiating to both villous and extravillous

cytotrophoblast, and then subsequently to syncytiotrophoblast

and endovascular trophoblast respectively [14]. We set out to

characterise imprinting of the KCNQ1 domain, analysing allelic

expression of central, ubiquitously imprinted genes, and the

flanking genes that are only imprinted in the mouse placenta, in

the early human placenta using EB-TS cells as an in vitro model of

human trophoblast precursors. The imprinting of the central genes

is referred to here as ‘ubiquitous’ as during development these

genes are imprinted where they are expressed (except for KCNQ1

in heart), including in the placenta. This is in contrast to

imprinting of ‘placental specific’ genes, which may be expressed

widely but are only imprinted in the placenta. We analyse allelic

expression of DCN, which is also only imprinted in the mouse

placenta, and measure methylation at the putative imprinting

control region for the KCNQ1 domain, the KvDMR.

Results

Methylation of the KvDMR
Methylation at the KvDMR, a CpG island in intron 10 of the

KCNQ1 gene, and the promoter for the KCNQ1OT1 transcript, was

analysed in hES and EB-TS cells and in term placenta (Figure 1).

Bisulphite sequencing of SHEF4 hES cells, SHEF4 EB-TS cells at

passage 15, H7 EB-TS cells both at passage 8 and at passage 13,

and term placenta was carried out (see supplementary Dataset S1

for all clones). Figure 1 shows exemplar ‘lollipop’ diagrams

generated by BiQ Analyser [15], showing methylated and

unmethylated CpGs as closed and open circles respectively. There

was a bias towards methylated stands, however, this was observed

for each sample. In each sample a substantial proportion (on

average 35%) of completely unmethylated DNA strands was

observed, strongly indicative of maintenance of differential

methylation at the KvDMR (Figure 1) This pattern of 35:65

unmethylated to methylated strands was seen in term placenta,

undifferentiated hES cells and each EB-TS cell line. Strand

specificity or parental origin could not be assigned due to a lack of

informative SNPs in the EB-TS and hES cell lines and a lack of

parental DNA.

Allelic expression of imprinted genes in the KCNQ1

cluster
The imprinted expression of transcripts in the human KCNQ1

cluster was analysed in informative hES and EB-TS cell lines and

first trimester placenta. A total of eight genetically distinct hES cell

lines were analysed, and two EB-TS lines, one of which, SHEF4

EB-TS, was available alongside the hES cell line it was

differentiated from, SHEF4 hES. The EB-TS cells had been

cultured through several cycles of freeze-thawing for storage

purposes, and through different passage numbers, so aliquots of

cells were analysed after different freeze-thaw cycles and at

different passages.

Of the flanking, placental specific genes, telomeric NAP1L4

(rs8505) and OSBPL5 (rs935431) were informative in EB-TS and

hES cells. In each sample analysed, regardless of freeze thaw cycle

or passage, both of these genes were expressed biallelically

(Figure 2a and b). We therefore demonstrate a lack of

imprinting, or even any allelic preference, of these transcripts in

EB-TS cells, and show an identical expression profile in

undifferentiated hES cells. These data show that the telomeric

genes in the KCNQ1 region are not imprinted in this in vitro model

of early trophoblast development.

Of the central, ubiquitously imprinted transcripts, only

KCNQ1OT1 was informative in samples of hES and EB-TS cells.

KCNQ1OT1 was monoallelically expressed in hES, EB-TS cells

and fetal placenta, as expected given the differential methylation at

the KvDMR (Figure 2d). The other central genes were not

informative in the available EB-TS cell lines, but were analysed in

hES cells. KCNQ1, PHLDA2 and CDKN1C were also monoalleli-

cally expressed in hES cells (data not shown). Given the

monoallelic expression of KCNQ1OT1, it was intruiging to find

that SLC22A18, a central ubiquitously imprinted gene that, whilst

monoallelically expressed in first trimester placenta, was bialleli-

cally expressed in both hES and EB-TS cells (Figure 2c). Allelic

expression of the IGF2 gene, also encoded at 11p15.5 but under

the control of a different transcriptional regulator than the

KvDMR, was also analysed and found to be monoallelically

expressed in EB-TS and hES cells (Figure 2e). These data and

the genomic layout of this locus are illustrated in Figure 3.

Allelic expression of DCN
DCN, encoded on hChr12 (mChr10) is widely expressed in the

developing mouse, but maternal specific expression is limited to

the placenta [10]. In human first trimester and term placenta,

DCN expression is biallelic [9]. To extend the analysis of

imprinting in EB-TS cells as a model for the early human

placenta, the allelic expression of DCN was also analysed in these

cells. DCN was expressed in undifferentiated hES cells and in EB-

TS cells, and contained an informative exonic SNP for H7S14 EB-

TS cells and one undifferentiated hES cell line. DCN expression

was biallelic in undifferentiated hES cells and in H7S14 EB-TS

Imprints in Trophoblast Cells
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samples at two different passage numbers, and in EB-TS cells

following either two or four freeze/thaw cycles (Figure 2f).

Discussion

Many more genes are imprinted in the mouse than in the

human. This lack of conservation often occurs where there is

placental specific imprinting [9,16]. The growth and develop-

ment of the placenta is central to the conflict theory over the

different roles of parental nutrient provision. Vast differences

between placentation, parity and the possibility of multiple

paternity between humans and mice are likely to contribute to

the differences between imprinting in the two species. As shown

by genome-wide gene expression profiles, differences between

mice and humans increase as prenatal development progresses

[11].

To study the genes that are imprinted specifically in the mouse

placenta in very early human placenta, a model was required that

displayed a sufficiently early trophoblast phenotype. This analysis

was carried out on trophoblast stem cells (EB-TS) which are

representative of the earliest stages of placental development and

capable of differentiation to both villous and extravillous

trophoblast lineages [14]. Our results show that in these human

trophoblast stem cells, OSBPL5, NAP1L4 and DCN are biallelically

expressed. These three genes are imprinted in the mouse placenta.

Until recently, the models available to study human placental

development have all had significant drawbacks. Cells may be

isolated from term placenta, or earlier, following termination.

Most examples are already committed to villous trophoblast and

only samples from very early gestation placenta are capable of

differentiation to the extravillous lineage. Such primary tropho-

blast cultures have a finite lifespan in culture without viral

transformation. Choriocarcinoma cell lines also maintain a villous

trophoblast phenotype, and are capable of extensive proliferation,

although their behaviour will inevitably display characteristics of

malignancy [17]. The development of a system to derive

trophoblast stem cells from human embryonic stem cells provides

an in vitro model with invasive properties which are highly

proliferative and readily available. In addition, EB-TS cells are

capable of differentiation to both villous and extravillous

trophoblast lineages, but without the genotype and phenotype

changes associated with transformation, making these cells the best

model for human early placental development.

We did identify small differences between imprinted gene

expression in the placenta in vivo and in EB-TS cells, although

differential methylation at the KvDMR seemed to be maintained

in all samples, regardless of whether they were in vivo or in vitro.

Whilst the ubiquitously imprinted gene KCNQ1OT1 remained

imprinted in both undifferentiated hES and EB-TS cells, as in fetal

placenta, SLC22A18 was expressed biallelically in all samples

analysed. SLC22A18 is maternally expressed in the human

placenta throughout gestation, so although it has not been

analysed in vivo during pre-implantation development, these data

were surprising. As imprinted SLC22A18 expression manifests only

Figure 1. Analysis of DNA methylation at the KvDMR in hES cells, EB-TS cells and term placenta. (a) Layout of the KvDMR on human
chromosome 11p15.5. The KCNQ1OT1 promoter contains a CpG island, which also lies within intron 10 of KCNQ1. The CpG island is differentially
methylated according to parental origin, with dense CpG methylation on the maternal allele. Paternal KCNQ1OT1 expression results in silencing of
surrounding genes, whereas maternal alleles remain active. (b) Methylation analysis of the KvDMR. Bisulphite PCR products containing 23 CpG
dinucleotides were cloned and sequenced from human trophoblast stem cell DNA from H7 EB-TS cells, SHEF4 EB-TS cells, undifferentiated hES cells,
and human term placenta tissue. CpG dinucleotides in the KvDMR are represented by open circles (unmethylated CpGs) and closed circles
(methylated CpGs) on a string. Unique DNA strand clones for a single cloning experiment are shown for term placenta, undifferentiated hES cells and
SHEF4 EB-TS cells, demonstrating the 35:65 ratio of unmethylated to methylated strands for each sample, strongly indicative of DMR maintenance.
Each PCR and cloning step was repeated using a different bisulphite conversion. Overall, mean ratios of unmethylated to methylated strands were:
Term placenta, 33:66; SHEF4 undifferentiated hES cells, 35:65; SHEF4 EB-TS, 41:59; H7 P8 EB-TS, 37:63; H7 P13 EB-TS, 35:65. The full set of data is
provided in supplementary Dataset S1.
doi:10.1371/journal.pone.0011595.g001
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in peri-implantation stages in the mouse, it is possible that the

differentiation state of EB-TS cells is too early for imprinted

SLC22A18 expression. Considerable evidence now exists for the

biallelic expression of certain imprinted genes in undifferentiated

human ES cell lines, however. Whilst for several genes this is

polymorphic, SLC22A18 is consistently reported to be biallelic in

all hES cell lines [18,19]. This indicates that EB-TS cells may

harbour some selected features of the epigenotype of hES cells.

The influence of in vitro manipulation and culture limits the

value of cell lines as a model for studies of imprinting. For studies

in humans, however, these limitations are inescapable. As far as

can be currently be investigated, and complimenting previous

studies showing a lack of conservation between mouse and man

[9] here we provide further evidence to suggest that humans do

not have placenta-specific imprinting.

Materials and Methods

Sample collection and cell culture
Fetal placenta. Fetal placenta was collected from consenting

women undergoing first-trimester termination of pregnancy, and

forms part of the Moore Fetal Tissue bank. Collection was

approved by the Hammersmith, Queen Charlotte’s & Chelsea and

Acton Hospitals Research Ethics Committee.

Human embryonic stem (hES) cells. Undifferentiated hES

cell lines from Sheffield Univeristy were cultured in T25 flasks with

5 ml ES media containing 80% KnockoutTM Dulbecco’s modified

Eagle’s medium (Gibco), 20% KnockoutTM Serum Replacement

(Gibco), 1 mM L-glutamine, 0.1 mM b-mercaptoethenol (Sigma),

1% non-essential amino acids, supplemented with 20 ng/ml FGF-

4. Cells were grown on a sub-confluent layer of Swiss-strain mouse

Figure 2. RT-PCR and sequencing of transcripts expressed in the KCNQ1 domain in informative EB-TS and hES cell samples. Allelic
expression of genes in the KCNQ1 domain, (a) OSBPL5, (b) NAP1L4, (c) SLC22A18, (d) KCNQ1OT1, plus (e) IGF2 which is on the same chromosome arm
but from a different imprinting domain, and (f) DCN on hChr 12, were analysed following RT-PCR and sequencing. Sequence chromatograms are
displayed with mono- or biallelic expression represented as a single or double sequence trace at the polymorphic site, respectively. The polymorphic
base is indicated by an asterix where monoallelic expression is shown. Telomeric genes, (a) OSBPL5 and (b) NAP1L4, were biallelically expressed in all
samples. (c) Central, ubiquitously expressed gene SLC22A18 was monoallelically expressed in fetal placenta but biallelic in undifferentiated hES and
EB-TS cells. Central gene (d) KCNQ1OT1, was monoallelic in EB-TS and hES cells. (e) IGF2 was also monoallelically expressed in hES and EB-TS cells. (f)
DCN on hChr 12 was biallelically expressed in EB-TS cells. B = Biallelic expression, M=monoallelic expression. Passage annotation: P8 indicates
samples were analysed following eight passages from derivation. Samples which were freeze-thawed (FT) between passages were also analysed
simultaneously and notated as follows: for example ‘P8 x1 FT’ meaning cells were analysed at passage 8, during which one freeze thaw cycle
occurred. The number of EB-TS and undifferentiated hES cell lines found to be informative for each gene is shown (for example, n = 2). For the EB-TS
cells, the number of genes which could be analysed was limited by informativity as only two genetically different lines were available. No differences
were detected between the different samples. SNPs: OSBPL5 rs935431, NAP1L4 rs8505, SLC22A18 rs1048046, KCNQ1OT1 rs231357, CD81 rs1049390,
IGF2 rs680 and DCN rs7441.
doi:10.1371/journal.pone.0011595.g002
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embryonic fibroblasts (MEFs), except for hES cell line SHEF7,

grown on human gonadal interstitial cell feeders. Colonies were

dissociated for passaging using trypsin with 3 mm glass beads.

Human Trophoblast stem (EB-TS) cells. hES colonies

were disrupted using 2 ml collagenase incubated at 37uC for 6

minutes, and removed from the flask surface using glass beads.

The cell mix was added to a non-adhering bacterial plate in

embryoid body (EB) media containing 80% Knockout DMEM,

20% knockout serum replacement, 1 mM glutamine, 0.1 mM b-

mercaptoethenol and 1% non-essential amino acids. Cells forming

EBs were cultured in EB medium for five days, before positive

selection based on secretion of human chorionic gonadotrophin

(hCG) and transferral to adherent plates containing MEFs. Cells

were then cultured in trophoblast media consisting of RPMI

(Sigma) supplemented with 20% fetal bovine serum (FBS), 1 mM

Sodium Pyruvate, 100 mM b-mercaptoethenol, 2 mM

LGlutamine and 50 mg/ml Pen/Strep. The cytotrophoblast stem

cell lines received from Sheffield were derived from the SHEF4

line, and from the H7S14 sub-line, obtained from an H7 line

gifted to the laboratory of Professor Peter Andrews by Dr J.

Thomson.

Analysis of DMR methylation
Bisulphite Sequencing. DNA from each sample was treated

with sodium bisulphite and purified using the EZ DNA

Methylation-Gold KitTM (Zymo, CA), before amplification using

primers specific for the KvDMR (primer sequences available on

request). Two PCRs from different bisulphite conversions were

carried out for each sample. DNA was tested for bisulphite

conversion by PCR with the bisulphite-specific Prader Willi/

Angelman Syndrome Imprinting Centre DMR primers in each

case. Hotstar Taq polymerase (Qiagen, West Sussex, UK) was

used for 45 PCR cycles. The three annotated SNPs within the

KvDMR amplicon (rs3782064, rs7940500 and rs379976) were

genotyped but neither were informative in the cell lines or the two

placenta samples analysed.

Amplicons were ligated into the PGEM-TH Easy Vector

(Promega) as per the manufacturers instructions. JM109 compe-

tent cells, of 108 cfu/mg efficiency (Promega) were transformed

and blue/white selected colonies amplified using M13 primers.

Approximately 40 correctly-transformed colony PCRs per bisul-

phite PCR were sequenced (Applied Biosystems, CA), allowing

calculation of bisulphite conversion rate and methylation profile of

each CpG in the amplified region. Only strands with a C to T

conversion efficiency over 90% were included in the analysis. BiQ

Analyser software was used to generate ‘lollipop’ diagrams to

illustrate methylated and unmethylated CpG sites along the

amplified DNA strands [15]. All sequences included in the

analyses differed in at least one aligned genomic ‘C’ position.

Imprinting analysis
Genotyping and RT PCR. Genomic DNA extraction from

snap frozen cell pellets was performed using standard phenol/

chloroform extraction. Exonic single nucleotide polymorphisms

(SNPs) were chosen based on their validation from the UCSC

Genome Browser dbSNP build 129 (http://genome.ucsc.edu/

cgi-bin/hgGateway) and expressed genes genotyped with respect

to each SNP, primers and conditions as in Monk et al., 2006.

Genotyping was performed on the following genes: OSBPL5

(rs935431 and rs2289998), NAP1L4 (rs8505), PHLDA2 (rs13390),

CDKN1C (PAPA repeat), SLC22A18 (rs1048046, rs1048047), KCNQ1

(rs1057128), KCNQ1OT1 (rs231357, rs231359), TSSC4

(rs2522009), CD81 (rs10645), PHEMX (rs2074022), ASCL2/

MASH2 (rs2072072) - all KCNQ1 cluster, hChr11. IGF2 (rs680) -

H19/IGF2 cluster, hChr11. SLC22A2 (rs3127594, rs3219198,

rs4646240) IGF2R cluster, hChr6 and DCN (rs7441) hChr12. Total

RNA from each cell line was extracted and reverse transcriptase

PCR (RT-PCR) carried out as follows: Briefly, following TURBO

DNaseTM (Ambion) treatment, 1 mg total RNA was treated with

DNaseI (Promega), primed with random hexamers and reverse-

transcribed with Murine-Maloney Leukaemia virus (MMLV)

reverse transcriptase (RT) (Promega). Templates created

Figure 3. Genomic organisation of the imprinted gene cluster on hChr11. UCSC genome browser display of the KCNQ1 imprinted domain
on human Chromosome 11p15.5 (human reference sequence NCBI Build 36.1). Genes are to scale (100 kb marker shown) oriented left to right from
centromere to telomere and SNPs analysed are indicated by an asterix. The data presented here are summarised, where genes imprinted in the
mouse placenta are not imprinted in human embryoid-body trophoblast stem cells but some central ubiquitously imprinted genes are
monoallelically expressed, excepting SLC22A18. Genes maternally expressed, as demonstrated in previously published work, in mouse
extraembryonic material and in human first trimester and term placenta and embryo are indicated in red, with the paternally expressed
Kcnq1ot1/KCNQ1OT1 in blue.
doi:10.1371/journal.pone.0011595.g003
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omitting the RT enzyme were included in the RT-PCR in each

case. Where possible, given the requirement for amplicons to

include validated exonic SNPs (db SNP Build 130), primers had

been designed to cross intron-exon boundaries (9). RT-PCR was

carried out on individual cDNA samples from each cell line.

Genotypes and allelic expression were determined using a

combination of Sanger sequencing (Applied Biosystems, CA) and

restriction fragment length polymorphism (RFLP) analysis.

Supporting Information

Dataset S1 Lollipop diagrams for each unique clone from the

bisulphite sequencing of the KvDMR in hES, EB-TS and human

placenta tissues.

Found at: doi:10.1371/journal.pone.0011595.s001 (1.85 MB PPT)
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