12 research outputs found

    PCNA dependent cellular activities tolerate dramatic perturbations in PCNA client interactions

    Get PDF
    Proliferating cell nuclear antigen (PCNA) is an essential cofactor for DNA replication and repair, recruiting multiple proteins to their sites of action. We examined the effects of the PCNA(S228I) mutation that causes PCNA-associated DNA repair disorder (PARD). Cells from individuals affected by PARD are sensitive to the PCNA inhibitors T3 and T2AA, showing that the S228I mutation has consequences for undamaged cells. Analysis of the binding between PCNA and PCNA-interacting proteins (PIPs) shows that the S228I change dramatically impairs the majority of these interactions, including that of Cdt1, DNMT1, PolD3(p66) and PolD4(p12). In contrast p21 largely retains the ability to bind PCNA(S228I). This property is conferred by the p21 PIP box sequence itself, which is both necessary and sufficient for PCNA(S228I) binding. Ubiquitination of PCNA is unaffected by the S228I change, which indirectly alters the structure of the inter-domain connecting loop. Despite the dramatic in vitro effects of the PARD mutation on PIP-degron binding, there are only minor alterations to the stability of p21 and Cdt1 in cells from affected individuals. Overall our data suggests that reduced affinity of PCNA(S228I) for specific clients causes subtle cellular defects in undamaged cells which likely contribute to the etiology of PARD

    Computer Simulation of Liquid Crystal Phases Formed by Gay-Berne Mesogens

    No full text

    Large-scale analysis of structural brain asymmetries in schizophrenia via the ENIGMA consortium.

    No full text
    Left-right asymmetry is an important organizing feature of the healthy brain that may be altered in schizophrenia, but most studies have used relatively small samples and heterogeneous approaches, resulting in equivocal findings. We carried out the largest case-control study of structural brain asymmetries in schizophrenia, with MRI data from 5,080 affected individuals and 6,015 controls across 46 datasets, using a single image analysis protocol. Asymmetry indexes were calculated for global and regional cortical thickness, surface area, and subcortical volume measures. Differences of asymmetry were calculated between affected individuals and controls per dataset, and effect sizes were meta-analyzed across datasets. Small average case-control differences were observed for thickness asymmetries of the rostral anterior cingulate and the middle temporal gyrus, both driven by thinner left-hemispheric cortices in schizophrenia. Analyses of these asymmetries with respect to the use of antipsychotic medication and other clinical variables did not show any significant associations. Assessment of age- and sex-specific effects revealed a stronger average leftward asymmetry of pallidum volume between older cases and controls. Case-control differences in a multivariate context were assessed in a subset of the data (N = 2,029), which revealed that 7% of the variance across all structural asymmetries was explained by case-control status. Subtle case-control differences of brain macrostructural asymmetry may reflect differences at the molecular, cytoarchitectonic, or circuit levels that have functional relevance for the disorder. Reduced left middle temporal cortical thickness is consistent with altered left-hemisphere language network organization in schizophrenia
    corecore