13 research outputs found

    Bismuth modified gamma radiation shielding properties of titanium vanadium sodium tellurite glasses as a potent transparent radiation-resistant glass applications

    Get PDF
    This work reported the radiation shielding characteristic of the bismuth titanium vanadium sodium tellurite glass system. The density of the specially-developed glass samples was increased from 2.21 to 4.01 g/cm3 with the addition of Bi2O3, despite the fact the molar volume is decease within 85.43–54.79 cm3/mol. The WinXcom program was used to approximate the effect of Bi2O3 on the gamma radiation shielding parameters of bismuth titanium vanadium sodium tellurite glasses. The μm values decrease with the increase of Bi2O3 concentration. The computed data shows that the glass sample with 20 mol.% of Bi2O3 content has the greatest radiation attenuation performance in comparison to other selected glasses. The Bi2O3–TiO2–V2O5–Na2O–TeO2 glass system shows excellent neutron shielding material with high long-term light transmittance and discharge resistance and could be potentially used as transparent radiation-resistant shielding glass applications

    Optical basicity and electronic polarizability of zinc borotellurite glass doped La3+ ions

    No full text
    Zinc borotellurite glasses doped with lanthanum oxide were successfully prepared through melt-quenching technique. The amorphous nature of the glass system was validated by the presence of a broad hump in the XRD result. The refractive index of the prepared glass samples was calculated by using the equation proposed by Dimitrov and Sakka. The theoretical value of molar refraction, electronic polarizability, oxide ion polarizability and metallization criterion were calculated by using Lorentz-Lorenz equation. Meanwhile, expression proposed by Duffy and Ingram for the theoretical value of optical basicity of multi-component glasses were applied to obtain energy band gap based optical basicity and refractive index based optical basicity. The optical basicity of prepared glasses decreased with the increasing concentration of lanthanum oxide. Metallization criterion on the basis of refractive index showed an increasing trend while energy band gap based metallization criterion showed a decreasing trend. The small metallization criterion values of the glass samples represent that the width of the conduction band becomes larger which increase the tendency for metallization of the glasses. The results obtained indicates that the fabricated glasses have high potential to be applied on optical limiting devices in photonic field. Keywords: Borotellurite glasses, Refractive index, Electronic polarizability, Oxide ion polarizability, Optical basicity, Metallization criterio

    Optical properties of lithium borate glass (Li2O)x (B2O3)1-x

    Get PDF
    A series of (Li2O)x(B2O3)1-x has been synthesized with mole fraction x=0.10, 0.15,0.20,0.25 and 0.30 mol% using melt quenching method. The structure of the glass system was determined by FTIR and X-ray diffraction. The density and molar volume were determined and the density increases with Li2O content whereas molar volume decreases with Li2O. Refractive index of glass samples were measured by ellipsometer. Refractive index increases with increase of Li2O. The absorption spectra of the studied glass showed that position of fundamental absorption edge shifts to longer wavelength with Li2O. Optical band gap varies from 0.10 to 2.22 eV and Urbach energy varies from 2.91 to 1.55 eV. The variation in optical band gap and Urbach energy were due to the variation in the glass structure

    Effect of PbO on the elastic behavior of ZnO–P2O5 glass systems

    Get PDF
    A series of ternary phosphate glasses in the form of 40(P2O5)–(60 − x)ZnO–xPbO and 50(P2O5)–(50 − x)ZnO–xPbO where x = 0–60 mol%, have been successfully prepared by conventional melt quenching technique. Both longitudinal and shear ultrasonic velocities were measured in different compositions of PbO using the MBS8000 ultrasonic data acquisition system at 10 MHz frequency and at room temperature. The ultrasonic velocity data, the density and the calculated elastic moduli are found to be composition dependent and discussed in terms of PbO modifiers. The correlation of elastic moduli with the atomic packing density of these glasses was discussed. To predict the compositional dependence of elastic moduli of this glass system, the interpretation of the variation in the experimental elastic behavior observed has been studied based on various of the bond compression and the Makishima–Mackenzie models. Keywords: Elastic moduli, Glasses, Zinc phosphate, Bond compression, Makishima–Mackenzie model

    Comprehensive study on estimation of gamma-ray exposure buildup factors for smart polymers as a potent application in nuclear industries

    No full text
    In the present study, the exposure buildup factors (EBF) have been investigated using geometric progression (G-P) fitting method for different types of smart polymers (DMSO, PDMS, PES, PMA, PVDC, and PVDF) in the energy range of 0.015–15 MeV. From the calculations, the values of the EBF were depended on the incident photon energy, penetration depth as well as chemical composition of the polymers. In the intermediate energy region, the EBF values were reached at maximum point while in low and high energy regions, the EBF values were decreased at minimum point. The obtained results of the selected polymers have been compared in terms of EBF with Al2O3 and other common polymers such as PAN, Teflon and SR. The shielding effectiveness of the selected polymers is found to be comparable to the common polymers. The results of this work should be useful in radiation shielding applications such as in industry, medical and nuclear engineering. Keywords: Smart polymers, Equivalent atomic numbers, Exposure buildup factors, G-P fitting, Shielding propertie

    ACOUSTIC AND THERMAL VIBRATIONAL BEHAVIOR OF RARE EARTH GLASSES

    Get PDF

    Effect of PbO on optical properties of tellurite glass

    No full text
    Binary (1 − x)(TeO2) − x(PbO), x = 0, 0.10, 0.15, 0.20, 0.25, 0.30 mol% glass system was fabricated using melt quenching method. X-ray diffraction (XRD) technique was employed to confirm the amorphous nature. The microanalysis of the major components was performed using energy dispersive EDX and X-ray spectrometry. Both the molar volume and the density were measured. FTIR and UV spectra were recorded at 400–4000 cm–1 and 220–800 nm, respectively. The optical band gap (Eopt), Urbach’s energy (Eu), index of refraction (n) were calculated using absorption spectrum fitting (ASF) and derivation of absorption spectrum fitting (DASF) methods. Molar refraction Rm and molecular polarizability αm have been calculated according to (ASF) method. Keywords: Glass, Tellurite, Lead, Optical band gap, Urbach’s energ

    ACOUSTIC AND THERMAL PROPERTIES OF CERIUM METAPHOSPHATE GLASSES

    Get PDF

    Ultrasonic relaxation of TeWB glasses at low temperatures

    No full text
    The ultrasonic relaxation of tellurite glasses xB2O3 – 70 TeO2 – (30 – x) WO3, 0 ≤ x ≤ 30 mol% was investigated by measuring the ultrasonic attenuation (αL) in these glasses in the thermal range 140–300 K (T) at various frequencies (f). Some characteristics can be obtained from the relation of αL–T, such as the average activation energy (Ep) and the attempt frequency (f0). The variables Ep and f0 are a function of frequency and B2O3 content. Moreover, the relation αL–T accounts well for the oscillations of the oxygen atoms in a relaxation process. Such a physical process is originated from transmitting ultrasonic energy to the oscillating oxygen atoms in a dual-well potential. The relaxation process is inspected by a model named central force one. The subtracted different physical variables from such a model are a function of B2O3 content
    corecore