427 research outputs found
Illustrating Life
My paintings contain both abstract and figurative elements that share an underlying theme: spiritual symbolism that conveys positive principles to live by. The symbolism that underscores my content carries over to my choice of palette; for example, red or yellow implies the vitality of life while purple stands for royalty.With my drawings, I concentrate on highly realistic graphite portraits of individuals I know. I present them in the environments in which they live to help highlight their unique personalities. With both painting and drawing, my goal is to illustrate spiritual philosophies on macro and micro levels respectively
Phase transitions in the steady state behavior of mechanically perturbed spin glasses and ferromagnets
We analyze the steady state regime of systems interpolating between spin
glasses and ferromagnets under a tapping dynamics recently introduced by
analogy with the dynamics of mechanically perturbed granular media. A crossover
from a second order to first order ferromagnetic transition as a function of
the spin coupling distribution is found. The flat measure over blocked states
introduced by Edwards for granular media is used to explain this scenario.
Annealed calculations of the Edwards entropy are shown to qualitatively explain
the nature of the phase transitions. A Monte-Carlo construction of the Edwards
measure confirms that this explanation is also quantitatively accurate
On the temperature dependence of the symmetry energy
We perform large-scale shell model Monte Carlo (SMMC) calculations for many
nuclei in the mass range A=56-65 in the complete pfg_{9/2}d_{5/2} model space
using an effective quadrupole-quadrupole+pairing residual interaction. Our
calculations are performed at finite temperatures between T=0.33-2 MeV. Our
main focus is the temperature dependence of the symmetry energy which we
determine from the energy differences between various isobaric pairs with the
same pairing structure and at different temperatures. Our SMMC studies are
consistent with an increase of the symmetry energy with temperature. We also
investigate possible consequences for core-collapse supernovae events
Aspirin: A review of its neurobiological properties and therapeutic potential for mental illness
There is compelling evidence to support an aetiological role for inflammation, oxidative and nitrosative stress (O&NS), and mitochondrial dysfunction in the pathophysiology of major neuropsychiatric disorders, including depression, schizophrenia, bipolar disorder, and Alzheimer's disease (AD). These may represent new pathways for therapy. Aspirin is a non-steroidal anti-inflammatory drug that is an irreversible inhibitor of both cyclooxygenase (COX)-1 and COX-2, It stimulates endogenous production of anti-inflammatory regulatory 'braking signals', including lipoxins, which dampen the inflammatory response and reduce levels of inflammatory biomarkers, including C-reactive protein, tumor necrosis factor-α and interleukin (IL)--6, but not negative immunoregulatory cytokines, such as IL-4 and IL-10. Aspirin can reduce oxidative stress and protect against oxidative damage. Early evidence suggests there are beneficial effects of aspirin in preclinical and clinical studies in mood disorders and schizophrenia, and epidemiological data suggests that high-dose aspirin is associated with a reduced risk of AD. Aspirin, one of the oldest agents in medicine, is a potential new therapy for a range of neuropsychiatric disorders, and may provide proof-of-principle support for the role of inflammation and O&NS in the pathophysiology of this diverse group of disorders
Thermodynamics and statistical mechanics of frozen systems in inherent states
We discuss a Statistical Mechanics approach in the manner of Edwards to the
``inherent states'' (defined as the stable configurations in the potential
energy landscape) of glassy systems and granular materials. We show that at
stationarity the inherent states are distributed according a generalized Gibbs
measure obtained assuming the validity of the principle of maximum entropy,
under suitable constraints. In particular we consider three lattice models (a
diluted Spin Glass, a monodisperse hard-sphere system under gravity and a
hard-sphere binary mixture under gravity) undergoing a schematic ``tap
dynamics'', showing via Monte Carlo calculations that the time average of
macroscopic quantities over the tap dynamics and over such a generalized
distribution coincide. We also discuss about the general validity of this
approach to non thermal systems.Comment: 10 pages, 16 figure
Massive stars as thermonuclear reactors and their explosions following core collapse
Nuclear reactions transform atomic nuclei inside stars. This is the process
of stellar nucleosynthesis. The basic concepts of determining nuclear reaction
rates inside stars are reviewed. How stars manage to burn their fuel so slowly
most of the time are also considered. Stellar thermonuclear reactions involving
protons in hydrostatic burning are discussed first. Then I discuss triple alpha
reactions in the helium burning stage. Carbon and oxygen survive in red giant
stars because of the nuclear structure of oxygen and neon. Further nuclear
burning of carbon, neon, oxygen and silicon in quiescent conditions are
discussed next. In the subsequent core-collapse phase, neutronization due to
electron capture from the top of the Fermi sea in a degenerate core takes
place. The expected signal of neutrinos from a nearby supernova is calculated.
The supernova often explodes inside a dense circumstellar medium, which is
established due to the progenitor star losing its outermost envelope in a
stellar wind or mass transfer in a binary system. The nature of the
circumstellar medium and the ejecta of the supernova and their dynamics are
revealed by observations in the optical, IR, radio, and X-ray bands, and I
discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry"
Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna
Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure
The nuclear energy density functional formalism
The present document focuses on the theoretical foundations of the nuclear
energy density functional (EDF) method. As such, it does not aim at reviewing
the status of the field, at covering all possible ramifications of the approach
or at presenting recent achievements and applications. The objective is to
provide a modern account of the nuclear EDF formalism that is at variance with
traditional presentations that rely, at one point or another, on a {\it
Hamiltonian-based} picture. The latter is not general enough to encompass what
the nuclear EDF method represents as of today. Specifically, the traditional
Hamiltonian-based picture does not allow one to grasp the difficulties
associated with the fact that currently available parametrizations of the
energy kernel at play in the method do not derive from a genuine
Hamilton operator, would the latter be effective. The method is formulated from
the outset through the most general multi-reference, i.e. beyond mean-field,
implementation such that the single-reference, i.e. "mean-field", derives as a
particular case. As such, a key point of the presentation provided here is to
demonstrate that the multi-reference EDF method can indeed be formulated in a
{\it mathematically} meaningful fashion even if does {\it not} derive
from a genuine Hamilton operator. In particular, the restoration of symmetries
can be entirely formulated without making {\it any} reference to a projected
state, i.e. within a genuine EDF framework. However, and as is illustrated in
the present document, a mathematically meaningful formulation does not
guarantee that the formalism is sound from a {\it physical} standpoint. The
price at which the latter can be enforced as well in the future is eventually
alluded to.Comment: 64 pages, 8 figures, submitted to Euroschool Lecture Notes in Physics
Vol.IV, Christoph Scheidenberger and Marek Pfutzner editor
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging
We present a measurement of the top quark pair () production cross
section () in collisions at TeV
using 230 pb of data collected by the D0 experiment at the Fermilab
Tevatron Collider. We select events with one charged lepton (electron or muon),
missing transverse energy, and jets in the final state. We employ
lifetime-based b-jet identification techniques to further enhance the
purity of the selected sample. For a top quark mass of 175 GeV, we
measure pb, in
agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt{s} = 1.96 TeV using Kinematic Characteristics of Lepton + Jets Events
We present a measurement of the top quark pair ttbar production cross section
in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb**{-1}
of data collected by the DO detector at the Fermilab Tevatron Collider. We
select events with one charged lepton (electron or muon), large missing
transverse energy, and at least four jets, and extract the ttbar content of the
sample based on the kinematic characteristics of the events. For a top quark
mass of 175 GeV, we measure sigma(ttbar) = 6.7 {+1.4-1.3} (stat) {+1.6- 1.1}
(syst) +/-0.4 (lumi) pb, in good agreement with the standard model prediction.Comment: submitted to Phys.Rev.Let
- …