37 research outputs found

    Formation and control of electron molecules in artificial atoms: Impurity and magnetic-field effects

    Full text link
    Interelectron interactions and correlations in quantum dots can lead to spontaneous symmetry breaking of the self-consistent mean field resulting in formation of Wigner molecules. With the use of spin-and-space unrestricted Hartree-Fock (sS-UHF) calculations, such symmetry breaking is discussed for field-free conditions, as well as under the influence of an external magnetic field. Using as paradigms impurity-doped (as well as the limiting case of clean) two-electron quantum dots (which are analogs to helium-like atoms), it is shown that the interplay between the interelectron repulsion and the electronic zero-point kinetic energy leads, for a broad range of impurity parameters, to formation of a singlet ground-state electron molecule, reminiscent of the molecular picture of doubly-excited helium. Comparative analysis of the conditional probability distributions for the sS-UHF and the exact solutions for the ground state of two interacting electrons in a clean parabolic quantum dot reveals that both of them describe formation of an electron molecule with similar characteristics. The self-consistent field associated with the triplet excited state of the two-electron quantum dot (clean as well as impurity-doped) exhibits symmetry breaking of the Jahn-Teller type, similar to that underlying formation of nonspherical open-shell nuclei and metal clusters. Furthermore, impurity and/or magnetic-field effects can be used to achieve controlled manipulation of the formation and pinning of the discrete orientations of the Wigner molecules. Impurity effects are futher illustrated for the case of a quantum dot with more than two electrons.Comment: Latex/Revtex, 10 pages with 4 gif figures. Small changes to explain the difference between Wigner and Jahn-Teller electron molecules. A complete version of the paper with high quality figures inside the text is available at http://shale.physics.gatech.edu/~costas/qdhelium.html For related papers, see http://www.prism.gatech.edu/~ph274c

    The integrated Sachs-Wolfe Effect -- Large Scale Structure Correlation

    Get PDF
    We discuss the correlation between late-time integrated Sachs-Wolfe (ISW) effect in the cosmic microwave background (CMB) temperature anisotropies and the large scale structure of the local universe. This correlation has been proposed and studied in the literature as a probe of the dark energy and its physical properties. We consider a variety of large scale structure tracers suitable for a detection of the ISW effect via a cross-correlation. In addition to luminous sources, we suggest the use of tracers such as dark matter halos or galaxy clusters. A suitable catalog of mass selected halos for this purpose can be constructed with upcoming wide-field lensing and Sunyaev-Zel'dovich (SZ) effect surveys. With multifrequency data, the presence of the ISW-large scale structure correlation can also be investigated through a cross-correlation of the frequency cleaned SZ and CMB maps. While convergence maps constructed from lensing surveys of the large scale structure via galaxy ellipticities are less correlated with the ISW effect, lensing potentials that deflect CMB photons are strongly correlated and allow, probably, the best mechanism to study the ISW-large scale structure correlation with CMB data alone.Comment: 10 Pages, PRD submitte

    Mochras borehole revisited: a new global standard for Early Jurassic earth history

    Get PDF
    The Early Jurassic epoch was a time of extreme environmental change: there are well-documented examples of rapid transitions from cold, or even glacial, climates to super greenhouse events, the latter characterized worldwide by hugely enhanced organic carbon burial, multiple large isotopic anomalies, global sea-level change, and mass extinction (Price, 1999; Hesselbo et al., 2000; Jenkyns, 2010; Korte and Hesselbo, 2011). These icehouse–greenhouse events not only reflect changes in the global climate system but are also thought to have had significant influence on the evolution of Jurassic marine biota (e.g. van de Schootbrugge et al., 2005; Fraguas et al., 2012). Furthermore, the events may serve as analogues for present-day and future environmental transitions

    An antidisconnexion device

    No full text
    corecore