765 research outputs found

    On the Angular Dependence of the Radiative Gluon Spectrum

    Get PDF
    The induced momentum spectrum of soft gluons radiated from a high energy quark produced in and propagating through a QCD medium is reexamined in the BDMPS formalism. A mistake in our published work (Physical Review C60 (1999) 064902) is corrected. The correct dependence of the fractional induced loss R(Ξcone)R(\theta_{{\rm cone}}) as a universal function of the variable Ξcone2L3q^\theta^2_{{\rm cone}} L^3 \hat q where LL is the size of the medium and q^\hat q the transport coefficient is presented. We add the proof that the radiated gluon momentum spectrum derived in our formalism is equivalent with the one derived in the Zakharov-Wiedemann approach.Comment: LaTex, 5 pages, 1 figur

    Laser-dressed vacuum polarization in a Coulomb field

    Get PDF
    We investigate quantum electrodynamic effects under the influence of an external, time-dependent electromagnetic field, which mediates dynamic modifications of the radiative corrections. Specifically, we consider the quantum electrodynamic vacuum-polarization tensor under the influence of two external background fields: a strong laser field and a nuclear Coulomb field. We calculate the charge and current densities induced by a nuclear Coulomb field in the presence of a laser field. We find the corresponding induced scalar and vector potentials. The induced potential, in first-order perturbation theory, leads to a correction to atomic energy levels. The external laser field breaks the rotational symmetry of the system. Consequently, the induced charge density is not spherically symmetric, and the energy correction therefore leads to a "polarized Lamb shift." In particular, the laser generates an additional potential with a quadrupole moment. The corresponding laser-dressed vacuum-polarization potential behaves like 1/r**3 at large distances, unlike the Uehling potential that vanishes exponentially for large r. Our investigation might be useful for other situations where quantum field theoretic phenomena are subjected to external fields of a rather involved structure.Comment: 13 pages, RevTe

    Experimental investigations of synchrotron radiation at the onset of the quantum regime

    Get PDF
    The classical description of synchrotron radiation fails at large Lorentz factors, Îł\gamma, for relativistic electrons crossing strong transverse magnetic fields BB. In the rest frame of the electron this field is comparable to the so-called critical field B0=4.414⋅109B_0 = 4.414\cdot10^9 T. For χ=ÎłB/B0≃1\chi = \gamma B/B_0 \simeq 1 quantum corrections are essential for the description of synchrotron radiation to conserve energy. With electrons of energies 10-150 GeV penetrating a germanium single crystal along the axis, we have experimentally investigated the transition from the regime where classical synchrotron radiation is an adequate description, to the regime where the emission drastically changes character; not only in magnitude, but also in spectral shape. The spectrum can only be described by quantum synchrotron radiation formulas. Apart from being a test of strong-field quantum electrodynamics, the experimental results are also relevant for the design of future linear colliders where beamstrahlung - a closely related process - may limit the achievable luminosity.Comment: 11 pages, 18 figures, submitted to PR

    Compositional Performance Modelling with the TIPPtool

    Get PDF
    Stochastic process algebras have been proposed as compositional specification formalisms for performance models. In this paper, we describe a tool which aims at realising all beneficial aspects of compositional performance modelling, the TIPPtool. It incorporates methods for compositional specification as well as solution, based on state-of-the-art techniques, and wrapped in a user-friendly graphical front end. Apart from highlighting the general benefits of the tool, we also discuss some lessons learned during development and application of the TIPPtool. A non-trivial model of a real life communication system serves as a case study to illustrate benefits and limitations

    Communication breakdown: Limits of spectro-temporal resolution for the perception of bat communication calls

    Get PDF
    During vocal communication, the spectro‑temporal structure of vocalizations conveys important contextual information. Bats excel in the use of sounds for echolocation by meticulous encoding of signals in the temporal domain. We therefore hypothesized that for social communication as well, bats would excel at detecting minute distortions in the spectro‑temporal structure of calls. To test this hypothesis, we systematically introduced spectro‑temporal distortion to communication calls of Phyllostomus discolor bats. We broke down each call into windows of the same length and randomized the phase spectrum inside each window. The overall degree of spectro‑temporal distortion in communication calls increased with window length. Modelling the bat auditory periphery revealed that cochlear mechanisms allow discrimination of fast spectro‑temporal envelopes. We evaluated model predictions with experimental psychophysical and neurophysiological data. We first assessed bats’ performance in discriminating original versions of calls from increasingly distorted versions of the same calls. We further examined cortical responses to determine additional specializations for call discrimination at the cortical level. Psychophysical and cortical responses concurred with model predictions, revealing discrimination thresholds in the range of 8–15 ms randomization‑window length. Our data suggest that specialized cortical areas are not necessary to impart psychophysical resilience to temporal distortion in communication calls

    Kinetic Equation for Gluons in the Background Gauge of QCD

    Get PDF
    We derive the quantum kinetic equation for a pure gluon plasma, applying the background field and closed-time-path method. The derivation is more general and transparent than earlier works. A term in the equation is found which, as in the classical case, corresponds to the color charge precession for partons moving in the gauge field.Comment: RevTex 4, 4 pages, no figure, PRL accepted versio

    Two-Photon Decays Reexamined: Cascade Contributions and Gauge Invariance

    Full text link
    The purpose of this paper is to calculate the two-photon decay rate corresponding to the two-photon transitions nS->1S and nD->1S in hydrogenlike ions with a low nuclear charge number Z (for principal quantum numbers n = 2,...,8. Numerical results are obtained within a nonrelativistic framework, and the results are found to scale approximately as (Z alpha)^6/n^3, where alpha is the fine-structure constant. We also attempt to clarify a number of subtle issues regarding the treatment of the coherent, quasi-simultaneous emission of the two photons as opposed to one-photon cascades. In particular, the gauge invariance of the decay rate is shown explicitly.Comment: 10 pages, LaTe

    Comment on ``High Temperature Fermion Propagator -- Resummation and Gauge Dependence of the Damping Rate''

    Full text link
    Baier et al. have reported the damping rate of long-wavelength fermionic excitations in high-temperature QED and QCD to be gauge-fixing-dependent even within the resummation scheme due to Braaten and Pisarski. It is shown that this problem is caused by the singular nature of the on-shell expansion of the fermion self-energy in the infra-red. Its regularization reveals that the alleged gauge dependence pertains to the residue rather than the pole of the fermion propagator, so that in particular the damping constant comes out gauge-independent, as it should.Comment: 5 page

    Kinetic equation for gluons at the early stage

    Full text link
    We derive the kinetic equation for pure gluon QCD plasma in a general way, applying the background field method. We show that the quantum kinetic equation contains a term as in the classical case, that describes a color charge precession of partons moving in the gauge field. We emphasize that this new term is necessary for the gauge covariance of the resulting equation.Comment: 6 pages, no figure, to appear in the proceedings of the 6th international conference on strange quarks in matter, Frankfurt, Germany, 25-29 september 200

    New Formulation of Causal Dissipative Hydrodynamics: Shock wave propagation

    Full text link
    The first 3D calculation of shock wave propagation in a homogeneous QGP has been performed within the new formulation of relativistic dissipative hydrodynamics which preserves the causality. We found that the relaxation time plays an important role and also affects the angle of Mach cone.Comment: 4 pages, 1 figure, Proceedings of Quark Matter 200
    • 

    corecore