260 research outputs found
Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere
Einstein realised that the fluctuations of a Brownian particle can be used to
ascertain properties of its environment. A large number of experiments have
since exploited the Brownian motion of colloidal particles for studies of
dissipative processes, providing insight into soft matter physics, and leading
to applications from energy harvesting to medical imaging. Here we use
optically levitated nanospheres that are heated to investigate the
non-equilibrium properties of the gas surrounding them. Analysing the sphere's
Brownian motion allows us to determine the temperature of the centre-of-mass
motion of the sphere, its surface temperature and the heated gas temperature in
two spatial dimensions. We observe asymmetric heating of the sphere and gas,
with temperatures reaching the melting point of the material. This method
offers new opportunities for accurate temperature measurements with spatial
resolution on the nanoscale, and a new means for testing non-equilibrium
thermodynamicsComment: 5 pages, 4 figures, supplementary material available upon reques
Centrality dependence of charged-particle pseudorapidity distributions from d+Au collisions at sqrt(s_{NN})=200 GeV
Charged-particle pseudorapidity densities are presented for the d+Au reaction
at sqrt{s_{NN}}=200 GeV with -4.2 <= eta <= 4.2$. The results, from the BRAHMS
experiment at RHIC, are shown for minimum-bias events and 0-30%, 30-60%, and
60-80% centrality classes. Models incorporating both soft physics and hard,
perturbative QCD-based scattering physics agree well with the experimental
results. The data do not support predictions based on strong-coupling,
semi-classical QCD. In the deuteron-fragmentation region the central 200 GeV
data show behavior similar to full-overlap d+Au results at sqrt{s_{NN}}=19.4
GeV.Comment: 4 pages, 3figures; expanded discussion of uncertainties; added 60-80%
centrality range; added additional discussion on centrality selection bia
Nuclear Stopping in Au+Au Collisions at sqrt(sNN) = 200 GeV
Transverse momentum spectra and rapidity densities, dN/dy, of protons,
anti-protons, and net--protons (p-pbar) from central (0-5%) Au+Au collisions at
sqrt(sNN) = 200 GeV were measured with the BRAHMS experiment within the
rapidity range 0 < y < 3. The proton and anti-proton dN/dy decrease from
mid-rapidity to y=3. The net-proton yield is roughly constant for y<1 at
dN/dy~7, and increases to dN/dy~12 at y~3. The data show that collisions at
this energy exhibit a high degree of transparency and that the linear scaling
of rapidity loss with rapidity observed at lower energies is broken. The energy
loss per participant nucleon is estimated to be 73 +- 6 GeV.Comment: 5 pages, 4 figure
Evolution of the nuclear modification factors with rapidity and centrality in d+Au collisions at $\sqrt{s_{NN}} = 200 GeV
We report on a study of the transverse momentum dependence of nuclear
modification factors for charged hadrons produced in deuteron + gold
collisions at GeV, as a function of collision centrality
and of the pseudorapidity () of the produced hadrons. We
find significant and systematic decrease of with increasing rapidity.
The midrapidity enhancement and the forward rapidity suppression are more
pronounced in central collisions relative to peripheral collisions. These
results are relevant to the study of the possible onset of gluon saturation at
RHIC energies.Comment: Four pages, four figures. Published in PRL. Figures 1 and 2 have been
updated, and several changes made to the tex
High Pt Hadron Spectra at High Rapidity
We report the measurement of charged hadron production at different
pseudo-rapidity values in deuteron+gold as well as proton+proton collisions at
= 200GeV at RHIC. The nuclear modification factors and
are used to investigate new behaviors in the deuteron+gold system as
function of rapidity and the centrality of the collisions respectively.Comment: Nine pages 4 figures to be published in the QM2004 Proceedings, typos
corrected and one reference adde
Recent Results from the BRAHMS Experiment
We present recent results obtained by the BRAHMS experiment at the
Relativistic Heavy Ion Collider (RHIC) for the systems of Au + Au and Cu + Cu
at \rootsnn{200} and at 62.4 GeV, and p + p at \rootsnn{200}. Nuclear
modification factors for Au + Au and Cu + Cu collisions are presented. Analysis
of anti-particle to particle ratios as a function of rapidity and collision
energy reveal that particle populations at the chemical freeze-out stage for
heavy-ion reactions at and above SPS energies are controlled by the baryon
chemical potential. From the particle spectra we deduce significant radial
expansion ( 0.75), as expected for systems created with a large
initial energy density. We also measure the elliptic flow parameter
versus rapidity and \ptn. We present rapidity dependent ratios within
for Au + Au and Cu + Cu at \rootsnn{200}. \Raa is found to increase
with decreasing collision energy, decreasing system size, and when going
towards more peripheral collisions. However, \Raa shows only a very weak
dependence on rapidity (for ), both for pions and protons.Comment: 16 pages and 14 figures, proceedings for plenary talk at Quark Matter
2005, Budapest, Hungar
D-brane Categories for Orientifolds -- The Landau-Ginzburg Case
We construct and classify categories of D-branes in orientifolds based on
Landau-Ginzburg models and their orbifolds. Consistency of the worldsheet
parity action on the matrix factorizations plays the key role. This provides
all the requisite data for an orientifold construction after embedding in
string theory. One of our main results is a computation of topological field
theory correlators on unoriented worldsheets, generalizing the formulas of Vafa
and Kapustin-Li for oriented worldsheets, as well as the extension of these
results to orbifolds. We also find a doubling of Knoerrer periodicity in the
orientifold context.Comment: 45 pages, 6 figure
Scanning the phases of QCD with BRAHMS
BRAHMS has the ability to study relativistic heavy ion collisions from the
final freeze-out of hadrons all the way back to the initial wave-function of
the gold nuclei. This is accomplished by studying hadrons with a very wide
range of momenta and angles. In doing so we can scan various phases of QCD,
from a hadron gas, to a quark gluon plasma and perhaps to a color glass
condensate.Comment: 8 pages, 6 figures, proceedings of plenary talk at Quark Matter 2004
conferenc
Quark Gluon Plasma an Color Glass Condensate at RHIC? The perspective from the BRAHMS experiment
We review the main results obtained by the BRAHMS collaboration on the
properties of hot and dense hadronic and partonic matter produced in
ultrarelativistic heavy ion collisions at RHIC. A particular focus of this
paper is to discuss to what extent the results collected so far by BRAHMS, and
by the other three experiments at RHIC, can be taken as evidence for the
formation of a state of deconfined partonic matter, the so called
quark-gluon-plasma (QGP). We also discuss evidence for a possible precursor
state to the QGP, i.e. the proposed Color Glass Condensate.Comment: 32 pages, 18 figure
Nuclear Modification Factor for Charged Pions and Protons at Forward Rapidity in Central Au+Au Collisions at 200 GeV
We present spectra of charged pions and protons in 0-10% central Au+Au
collisions at GeV at mid-rapidity () and forward
pseudorapidity () measured with the BRAHMS experiment at RHIC. The
spectra are compared to spectra from p+p collisions at the same energy scaled
by the number of binary collisions. The resulting nuclear modification factors
for central Au+Au collisions at both and exhibit suppression
for charged pions but not for (anti-)protons at intermediate . The
ratios have been measured up to GeV/ at the two
rapidities and the results indicate that a significant fraction of the charged
hadrons produced at intermediate range are (anti-)protons at both
mid-rapidity and
- …