215 research outputs found
Structures of technetium and rhenium complexes
Investigations in the 99mTc chemistry are stimulated by the search for new radiopharmaceuticals for nuclear medical applications. To understand the coordination mode of Tc with various complexing agents, macroscopic studies of technetium coordination chemistry are often performed using the low energy ß-emitting radionuclide 99Tc, which has a much longer half life (t1/2 = 2.12 x 105 years) than 99mTc, in the mg level. Investigations of Re coordination chemistry are done in conjunction with Tc studies because Re possesses chemical properties similar to those of Tc. For some chemical tasks, Re provides a non-radioactive alternative to work with Tc radioisotopes. In addition, 186Re and 188Re are of great interest to nuclear medicine as they possess nuclear properties favorable for use in therapeutic radiopharmaceuticals. Our investigations of Tc and Re coordination chemistry are toward this goal. A large series of technetium and rhenium complexes resulted from this studies have been characterized by X-ray crystal structure determinations. This survey covers the structural investigations performed by P.Leibnitz and G.Reck (BAM) from 1992 till now. It summarizes results obtained in the Rossendorf technetium group and is not intended to compete with the well-written reviews published so far
Efficient Bayesian-based Multi-View Deconvolution
Light sheet fluorescence microscopy is able to image large specimen with high
resolution by imaging the sam- ples from multiple angles. Multi-view
deconvolution can significantly improve the resolution and contrast of the
images, but its application has been limited due to the large size of the
datasets. Here we present a Bayesian- based derivation of multi-view
deconvolution that drastically improves the convergence time and provide a fast
implementation utilizing graphics hardware.Comment: 48 pages, 20 figures, 1 table, under review at Nature Method
Comparative study of an Eden model for the irreversible growth of spins and the equilibrium Ising model
The Magnetic Eden Model (MEM) with ferromagnetic interactions between
nearest-neighbor spins is studied in dimensional rectangular geometries
for . In the MEM, magnetic clusters are grown by adding spins at the
boundaries of the clusters. The orientation of the added spins depends on both
the energetic interaction with already deposited spins and the temperature,
through a Boltzmann factor. A numerical Monte Carlo investigation of the MEM
has been performed and the results of the simulations have been analyzed using
finite-size scaling arguments. As in the case of the Ising model, the MEM in is non-critical (only exhibits an ordered phase at ). In
the MEM exhibits an order-disorder transition of second-order at a finite
temperature. Such transition has been characterized in detail and the relevant
critical exponents have been determined. These exponents are in agreement
(within error bars) with those of the Ising model in 2 dimensions. Further
similarities between both models have been found by evaluating the probability
distribution of the order parameter, the magnetization and the susceptibility.
Results obtained by means of extensive computer simulations allow us to put
forward a conjecture which establishes a nontrivial correspondence between the
MEM for the irreversible growth of spins and the equilibrium Ising model. This
conjecture is certainly a theoretical challenge and its confirmation will
contribute to the development of a framework for the study of irreversible
growth processes.Comment: 21 pages, 11 figure
Magnetoresistance through a single molecule
The use of single molecules to design electronic devices is an extremely
challenging and fundamentally different approach to further downsizing
electronic circuits. Two-terminal molecular devices such as diodes were first
predicted [1] and, more recently, measured experimentally [2]. The addition of
a gate then enabled the study of molecular transistors [3-5]. In general terms,
in order to increase data processing capabilities, one may not only consider
the electron's charge but also its spin [6,7]. This concept has been pioneered
in giant magnetoresistance (GMR) junctions that consist of thin metallic films
[8,9]. Spin transport across molecules, i.e. Molecular Spintronics remains,
however, a challenging endeavor. As an important first step in this field, we
have performed an experimental and theoretical study on spin transport across a
molecular GMR junction consisting of two ferromagnetic electrodes bridged by a
single hydrogen phthalocyanine (H2Pc) molecule. We observe that even though
H2Pc in itself is nonmagnetic, incorporating it into a molecular junction can
enhance the magnetoresistance by one order of magnitude to 52%.Comment: To appear in Nature Nanotechnology. Present version is the first
submission to Nature Nanotechnology, from May 18th, 201
Non-adiabatic and time-resolved photoelectron spectroscopy for molecular systems
We quantify the non-adiabatic contributions to the vibronic sidebands of
equilibrium and explicitly time-resolved non-equilibrium photoelectron spectra
for a vibronic model system of Trans-Polyacetylene. Using exact
diagonalization, we directly evaluate the sum-over-states expressions for the
linear-response photocurrent. We show that spurious peaks appear in the
Born-Oppenheimer approximation for the vibronic spectral function, which are
not present in the exact spectral function of the system. The effect can be
traced back to the factorized nature of the Born-Oppenheimer initial and final
photoemission states and also persists when either only initial, or final
states are replaced by correlated vibronic states. Only when correlated initial
and final vibronic states are taken into account, the spurious spectral weights
of the Born-Oppenheimer approximation are suppressed. In the non-equilibrium
case, we illustrate for an initial Franck-Condon excitation and an explicit
pump-pulse excitation how the vibronic wavepacket motion of the system can be
traced in the time-resolved photoelectron spectra as function of the pump-probe
delay
Magnetic relaxation and dipole-coupling-induced magnetization in nanostructured thin films during growth: A cluster Monte Carlo study
For growing inhomogeneous thin films with an island nanostructure similar as
observed in experiment, we determine the nonequilibrium and equilibrium
remanent magnetization. The single-island magnetic anisotropy, the dipole
coupling, and the exchange interaction between magnetic islands are taken into
account within a micromagnetic model. A cluster Monte Carlo method is developed
which includes coherent magnetization changes of connected islands. This causes
a fast relaxation towards equilibrium for irregularly connected systems. We
analyse the transition from dipole coupled islands at low coverages to a
strongly connected ferromagnetic film at high coverages during film growth. For
coverages below the percolation threshold, the dipole interaction induces a
collective magnetic order with ordering temperatures of 1 - 10 K for the
assumed model parameters. Anisotropy causes blocking temperatures of 10 - 100 K
and thus pronounced nonequilibrium effects. The dipole coupling leads to a
somewhat slower magnetic relaxation.Comment: 13 pages, 6 figures, revised manuscrip
Memory B Cell Antibodies to HIV-1 gp140 Cloned from Individuals Infected with Clade A and B Viruses
Understanding the antibody response to HIV-1 in humans that show broad neutralizing serologic activity is a crucial step in trying to reproduce such responses by vaccination. Investigating antibodies with cross clade reactivity is particularly important as these antibodies may target conserved epitopes on the HIV envelope gp160 protein. To this end we have used a clade B YU-2 gp140 trimeric antigen and single-cell antibody cloning methods to obtain 189 new anti-gp140 antibodies representing 51 independent B cell clones from the IgG memory B cells of 3 patients infected with HIV-1 clade A or B viruses and exhibiting broad neutralizing serologic activity. Our results support previous findings showing a diverse antibody response to HIV gp140 envelope protein, characterized by differentially expanded B-cell clones producing highly hypermutated antibodies with heterogenous gp140-specificity and neutralizing activity. In addition to their high-affinity binding to the HIV spike, the vast majority of the new anti-gp140 antibodies are also polyreactive. Although none of the new antibodies are as broad or potent as VRC01 or PG9, two clonally-related antibodies isolated from a clade A HIV-1 infected donor, directed against the gp120 variable loop 3, rank in the top 5% of the neutralizers identified in our large collection of 185 unique gp140-specific antibodies in terms of breadth and potency
Probing the Hofmeister Effect with Ultrafast Core Hole Spectroscopy
In the current work, X-ray emission spectra of aqueous solutions of different inorganic salts within the Hofmeister series are presented. The results reflect the direct interaction of the ions with the water molecules and therefore, reveal general properties of the salt-water interactions. Within the experimental precision a significant effect of the ions on the water structure has been observed but no ordering according to the structure maker/structure breaker concept could be mirrored in the results indicating that the Hofmeister effect-if existent-may be caused by more complex interactions
- …