31,571 research outputs found

    Off-Shell Electromagnetic Form Fators of the Nucleon in Chiral Perturbation Theory

    Full text link
    We study the electromagnetic form factors of a nucleon in next-to-leading order chiral perturbation theory (CPT) in the case where one of the nucleons is off its mass shell. We calculate the leading nonanalytic contributions to relevant measures for the off-shell dependence in the limited kinematical range allowed.Comment: 3 pages LaTeX with worldsci.sty (available by mailing [email protected] and typing "get worldsci.sty" in the subject line), invited talk given at the International Symposium on Medium Energy Physics, Beijing, August 199

    Carleman estimates and absence of embedded eigenvalues

    Full text link
    Let L be a Schroedinger operator with potential W in L^{(n+1)/2}. We prove that there is no embedded eigenvalue. The main tool is an Lp Carleman type estimate, which builds on delicate dispersive estimates established in a previous paper. The arguments extend to variable coefficient operators with long range potentials and with gradient potentials.Comment: 26 page

    The pion form factor on the lattice at zero and finite temperature

    Full text link
    We calculate the electromagnetic form factor of the pion in quenched lattice QCD. The non-perturbatively improved Sheikoleslami-Wohlert lattice action is used together with the consistently O(a) improved current. We calculate the pion form factor for masses down to m_pi = 360 MeV, extract the charge radius, and extrapolate toward the physical pion mass. In the second part, we discuss results for the pion form factor and charge radius at 0.93 T_c and compare with zero temperature results.Comment: Invited talk at the Lightcone 2004 conference, Amsterdam, 16-20 August, 200

    Charm production in deep inelastic and diffractive scattering

    Get PDF
    We consider the production of charm by real and virtual photons. Special attention is paid to diffractive charm production, which provides information on the gluonic content of the Pomeron. Our calculations are based on the gluon distributions of the CKMT-model, which is shown to lead to agreement with the data on open charm production in deep inelastic scattering. We compare predictions for diffractive charm production of different models for the distribution of gluons in the Pomeron. Experiments at HERA should be able to discriminate between them. Predictions for beauty production in diffractive and non-diffractive interactions of photons are also given.Comment: 14 pages REVTEX and 24 figures include

    A machine learning study to identify spinodal clumping in high energy nuclear collisions

    Get PDF
    The coordinate and momentum space configurations of the net baryon number in heavy ion collisions that undergo spinodal decomposition, due to a first-order phase transition, are investigated using state-of-the-art machine-learning methods. Coordinate space clumping, which appears in the spinodal decomposition, leaves strong characteristic imprints on the spatial net density distribution in nearly every event which can be detected by modern machine learning techniques. On the other hand, the corresponding features in the momentum distributions cannot clearly be detected, by the same machine learning methods, in individual events. Only a small subset of events can be systematically differ- entiated if only the momentum space information is available. This is due to the strong similarity of the two event classes, with and without spinodal decomposition. In such sce- narios, conventional event-averaged observables like the baryon number cumulants signal a spinodal non-equilibrium phase transition. Indeed the third-order cumulant, the skewness, does exhibit a peak at the beam energy (Elab = 3–4 A GeV), where the transient hot and dense system created in the heavy ion collision reaches the first-order phase transition

    A Renormalization Group for Hamiltonians: Numerical Results

    Full text link
    We describe a renormalization group transformation that is related to the breakup of golden invariant tori in Hamiltonian systems with two degrees of freedom. This transformation applies to a large class of Hamiltonians, is conceptually simple, and allows for accurate numerical computations. In a numerical implementation, we find a nontrivial fixed point and determine the corresponding critical index and scaling. Our computed values for various universal constants are in good agreement with existing data for area-preserving maps. We also discuss the flow associated with the nontrivial fixed point.Comment: 11 Pages, 2 Figures. For future updates, check ftp://ftp.ma.utexas.edu/pub/papers/koch

    Crossing conditions in coupled cluster theory

    Full text link
    We derive the crossing conditions at conical intersections between electronic states in coupled cluster theory, and show that if the coupled cluster Jacobian matrix is nondefective, two (three) independent conditions are correctly placed on the nuclear degrees of freedom for an inherently real (complex) Hamiltonian. Calculations using coupled cluster theory on an 21A′/31A′2 {^{1}}A' / 3 {^{1}}A' conical intersection in hypofluorous acid illustrate the nonphysical artifacts associated with defects at accidental same-symmetry intersections. In particular, the observed intersection seam is folded about a space of the correct dimensionality, indicating that minor modifications to the theory are required for it to provide a correct description of conical intersections in general. We find that an accidental symmetry allowed 11A"/21A"1 {^{1}}A" / 2 {^{1}}A" intersection in hydrogen sulfide is properly described, showing no artifacts as well as linearity of the energy gap to first order in the branching plane.Comment: 9 pages and 4 figure

    Direct Investigation of Superparamagnetism in Co Nanoparticle Films

    Full text link
    A direct probe of superparamagnetism was used to determine the complete anisotropy energy distribution of Co nanoparticle films. The films were composed of self-assembled lattices of uniform Co nanoparticles 3 nm or 5 nm in diameter, and a variable temperature scanning-SQUID microscope was used to measure temperature-induced spontaneous magnetic noise in the samples. Accurate measurements of anisotropy energy distributions of small volume samples will be critical to magnetic optimization of nanoparticle devices and media.Comment: 4 pages, 4 figures. Submitted to Physical Review Letter

    Current Induced Excitations in Cu/Co/Cu Single Ferromagnetic Layer Nanopillars

    Full text link
    Current-induced magnetic excitations in Cu/Co/Cu single layer nanopillars (~50 nm in diameter) have been studied experimentally as a function of Co layer thickness at low temperatures for large applied fields perpendicular to the layers. For asymmetric junctions current induced excitations are observed at high current densities for only one polarity of the current and are absent at the same current densities in symmetric junctions. These observations confirm recent predictions of spin-transfer torque induced spin wave excitations in single layer junctions with a strong asymmetry in the spin accumulation in the leads.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let
    • …
    corecore