498 research outputs found
Ultrafast Spin Dynamics in GaAs/GaSb/InAs Heterostructures Probed by Second Harmonic Generation
We report the first application of pump-probe second harmonic generation
(SHG) measurements to characterize optically-induced magnetization in
non-magnetic multilayer semiconductors. In the experiment, coherent spins are
selectively excited by a pump beam in the GaAs layer of GaAs/GaSb/InAs
structures. However, the resulting net magnetization manifests itself through
the induced SHG probe signal from the GaSb/InAs interface, thus indicating a
coherent spin transport across the heterostructure. We find that the
magnetization dynamics is governed by an interplay between the spin density
evolution at the interfaces and the spin dephasing.Comment: 4 pages + 4 Fig
Ultrafast Dynamics of Interfacial Electric Fields in Semiconductor Heterostructures Monitored by Pump-Probe Second Harmonic Generation
We report first measurements of the ultrafast dynamics of interfacial
electric fields in semiconductor multilayers using pump-probe second harmonic
generation (SHG). A pump beam was tuned to excite carriers in all layers of
GaAs/GaSb and GaAs/GaSb/InAs heterostructures. Further carrier dynamics
manifests itself via electric fields created by by charge separation at
interfaces. The evolution of interfacial fields is monitored by a probe beam
through the eletric-field-induced SHG signal. We distinguish between several
stages of dynamics originating from redistribution of carriers between the
layers. We also find a strong enhancement of the induced electric field caused
by hybridization of the conduction and valence bands at the GaSb/InAs
interface.Comment: 4 pages + 2 fig
Time-resolved second harmonic generation study of buried semiconductor heterointerfaces using soliton-induced transparency
The transient second harmonic generation and linear optical reflectivity
signals measured simultaneously in reflection from GaAs/GaSb/InAs and GaAs/GaSb
heterostructures revealed a new mechanism for creating self-induced
transparency in narrow bandgap semiconductors at low temperatures, which is
based on the dual-frequency electro-optic soliton propagation. This allows the
ultrafast carrier dynamics at buried semiconductor heterointerfaces to be
studied
Is it possible to estimate the Higgs Mass from the CMB Power Spectrum?
General Relativity and Standard Model are considered as a theory of dynamical
scale symmetry with definite initial data compatible with the accepted Higgs
mechanism. In this theory the Early Universe behaves like a factory of
electroweak bosons and Higgs scalars, and it gives a possibility to identify
three peaks in the Cosmic Microwave Background power spectrum with the
contributions of photonic decays and annihilation processes of primordial
Higgs, W, and Z bosons in agreement with the QED coupling constant, Weinberg's
angle, and Higgs' particle mass of about 118 GeV.Comment: version to appear in Yadernaya Fizik
Landscape science: a Russian geographical tradition
The Russian geographical tradition of landscape science (landshaftovedenie) is analyzed with particular reference to its initiator, Lev Semenovich Berg (1876-1950). The differences between prevailing Russian and Western concepts of landscape in geography are discussed, and their common origins in German geographical thought in the late nineteenth and early twentieth centuries are delineated. It is argued that the principal differences are accounted for by a number of factors, of which Russia's own distinctive tradition in environmental science deriving from the work of V. V. Dokuchaev (1846-1903), the activities of certain key individuals (such as Berg and C. O. Sauer), and the very different social and political circumstances in different parts of the world appear to be the most significant. At the same time it is noted that neither in Russia nor in the West have geographers succeeded in specifying an agreed and unproblematic understanding of landscape, or more broadly in promoting a common geographical conception of human-environment relationships. In light of such uncertainties, the latter part of the article argues for closer international links between the variant landscape traditions in geography as an important contribution to the quest for sustainability
Tetraspanin (TSP-17) Protects Dopaminergic Neurons against 6-OHDA-Induced Neurodegeneration in <i>C. elegans</i>
Parkinson's disease (PD), the second most prevalent neurodegenerative disease after Alzheimer's disease, is linked to the gradual loss of dopaminergic neurons in the substantia nigra. Disease loci causing hereditary forms of PD are known, but most cases are attributable to a combination of genetic and environmental risk factors. Increased incidence of PD is associated with rural living and pesticide exposure, and dopaminergic neurodegeneration can be triggered by neurotoxins such as 6-hydroxydopamine (6-OHDA). In C. elegans, this drug is taken up by the presynaptic dopamine reuptake transporter (DAT-1) and causes selective death of the eight dopaminergic neurons of the adult hermaphrodite. Using a forward genetic approach to find genes that protect against 6-OHDA-mediated neurodegeneration, we identified tsp-17, which encodes a member of the tetraspanin family of membrane proteins. We show that TSP-17 is expressed in dopaminergic neurons and provide genetic, pharmacological and biochemical evidence that it inhibits DAT-1, thus leading to increased 6-OHDA uptake in tsp-17 loss-of-function mutants. TSP-17 also protects against toxicity conferred by excessive intracellular dopamine. We provide genetic and biochemical evidence that TSP-17 acts partly via the DOP-2 dopamine receptor to negatively regulate DAT-1. tsp-17 mutants also have subtle behavioral phenotypes, some of which are conferred by aberrant dopamine signaling. Incubating mutant worms in liquid medium leads to swimming-induced paralysis. In the L1 larval stage, this phenotype is linked to lethality and cannot be rescued by a dop-3 null mutant. In contrast, mild paralysis occurring in the L4 larval stage is suppressed by dop-3, suggesting defects in dopaminergic signaling. In summary, we show that TSP-17 protects against neurodegeneration and has a role in modulating behaviors linked to dopamine signaling
WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics
Prostate cancer cells with stem cell characteristics were identified in human prostate cancer cell lines by their ability to form from single cells self-renewing prostaspheres in non-adherent cultures. Prostaspheres exhibited heterogeneous expression of proliferation, differentiation and stem cell-associated makers CD44, ABCG2 and CD133. Treatment with WNT inhibitors reduced both prostasphere size and self-renewal. In contrast, addition of Wnt3a caused increased prostasphere size and self-renewal, which was associated with a significant increase in nuclear Β-catenin, keratin 18, CD133 and CD44 expression. As a high proportion of LNCaP and C4-2B cancer cells express androgen receptor we determined the effect of the androgen receptor antagonist bicalutamide. Androgen receptor inhibition reduced prostasphere size and expression of PSA, but did not inhibit prostasphere formation. These effects are consistent with the androgen-independent self-renewal of cells with stem cell characteristics and the androgen-dependent proliferation of transit amplifying cells. As the canonical WNT signaling effector Β-catenin can also associate with the androgen receptor, we propose a model for tumour propagation involving a balance between WNT and androgen receptor activity. That would affect the self-renewal of a cancer cell with stem cell characteristics and drive transit amplifying cell proliferation and differentiation. In conclusion, we provide evidence that WNT activity regulates the self-renewal of prostate cancer cells with stem cell characteristics independently of androgen receptor activity. Inhibition of WNT signaling therefore has the potential to reduce the self-renewal of prostate cancer cells with stem cell characteristics and improve the therapeutic outcome.Peer reviewe
Debating the urban dimension of territorial cohesion
The Territorial Cohesion goal was only included in the EU Treaty by 2009, with a view to promote a more balanced and harmonious European territory. One year earlier (2008), the European Commission (EC) published the ‘Green Paper on Territorial Cohesion—Turning territorial diversity into strength’. Neither one, nor the other, clearly defines the meaning of the Territorial Cohesion concept. The later, however, proposes three main policy responses towards more balanced and harmonious development: (i) Concentration: overcoming differences in density; (ii) Connecting territories: overcoming distance; and (iii) Cooperation: overcoming division. Although not explicitly, this document identifies several ‘urban questions’ to be dealt when promoting territorial cohesive policies: avoiding diseconomies of very large agglomerations and urban sprawl processes, combating urban decay and social exclusion, avoiding excessive concentrations of growth, promoting access to integrated transport systems and creating metropolitan bodies. In this light, this chapter proposes to debate the importance of the urban dimension to achieve the goal of territorial cohesion at several territorial levels.info:eu-repo/semantics/acceptedVersio
- …