1 research outputs found

    Base free transfer hydrogenation using a covalent triazine framework based catalyst

    Full text link
    [EN] Isomerisation of allylic alcohols to saturated ketones can be efficiently catalysed by a heterogeneous molecular system resulting from (IrCp)-Cp-III* anchoring to a covalent triazine framework. The obtained catalysts are active, selective, and fully recyclable.Financial support from the Generalitat Valenciana (projects Consolider-Ingenio MULTICAT and AICO/2015/065), the Spanish Ministry of Economy and Competitiveness (MINECO) (program Severo Ochoa SEV20120267), and the Spanish Ministry of Science and Innovation (MICINN) (project MAT2014-52085-C2-1-P) are gratefully acknowledged. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 641887 (project acronym: DEFNET). Also, financial support from the European Union Seventh Framework Programme (FP7/2007-2013) under the grant agreement number 309701, project Eco2CO2 is acknowledged.Bavykina, A.; Mautschke, H.; Makkee, M.; Kapteijn, F.; Gascon, J.; LlabrĂ©s I Xamena, FX. (2017). Base free transfer hydrogenation using a covalent triazine framework based catalyst. CrystEngComm. 19(29):4166-4170. https://doi.org/10.1039/C7CE00561JS416641701929Wang, D., & Astruc, D. (2015). The Golden Age of Transfer Hydrogenation. Chemical Reviews, 115(13), 6621-6686. doi:10.1021/acs.chemrev.5b00203Cirujano, F. G., Leyva-PĂ©rez, A., Corma, A., & LlabrĂ©s i Xamena, F. X. (2013). MOFs as Multifunctional Catalysts: Synthesis of Secondary Arylamines, Quinolines, Pyrroles, and Arylpyrrolidines over Bifunctional MIL-101. ChemCatChem, 5(2), 538-549. doi:10.1002/cctc.201200878Khajavi, H., Stil, H. A., Kuipers, H. P. C. E., Gascon, J., & Kapteijn, F. (2013). Shape and Transition State Selective Hydrogenations Using Egg-Shell Pt-MIL-101(Cr) Catalyst. ACS Catalysis, 3(11), 2617-2626. doi:10.1021/cs400681sCorma, A. (2006). Chemoselective Hydrogenation of Nitro Compounds with Supported Gold Catalysts. Science, 313(5785), 332-334. doi:10.1126/science.1128383Azua, A., Mata, J. A., & Peris, E. (2011). Iridium NHC Based Catalysts for Transfer Hydrogenation Processes Using Glycerol as Solvent and Hydrogen Donor. Organometallics, 30(20), 5532-5536. doi:10.1021/om200796cAzua, A., Mata, J. A., Peris, E., Lamaty, F., Martinez, J., & Colacino, E. (2012). Alternative Energy Input for Transfer Hydrogenation using Iridium NHC Based Catalysts in Glycerol as Hydrogen Donor and Solvent. Organometallics, 31(10), 3911-3919. doi:10.1021/om300109eAzua, A., Sanz, S., & Peris, E. (2011). Water-Soluble IrIII N-Heterocyclic Carbene Based Catalysts for the Reduction of CO2 to Formate by Transfer Hydrogenation and the Deuteration of Aryl Amines in Water. Chemistry - A European Journal, 17(14), 3963-3967. doi:10.1002/chem.201002907Binobaid, A., Iglesias, M., Beetstra, D., Dervisi, A., Fallis, I., & Cavell, K. J. (2010). Donor-Functionalised Expanded Ring N-Heterocyclic Carbenes: Highly Effective Ligands in Ir-Catalysed Transfer Hydrogenation. European Journal of Inorganic Chemistry, 2010(34), 5426-5431. doi:10.1002/ejic.201000680Furfari, S. K., Gyton, M. R., Twycross, D., & Cole, M. L. (2015). Air stable NHCs: a study of stereoelectronics and metallorganic catalytic activity. Chemical Communications, 51(1), 74-76. doi:10.1039/c4cc06809bGong, X., Zhang, H., & Li, X. (2011). Iridium phosphine abnormal N-heterocyclic carbene complexes in catalytic hydrogen transfer reactions. Tetrahedron Letters, 52(43), 5596-5600. doi:10.1016/j.tetlet.2011.08.058GĂŒlcemal, D., Gökçe, A. G., GĂŒlcemal, S., & Çetinkaya, B. (2014). Hydroxyl and ester functionalized N-heterocyclic carbene complexes of iridium(i): efficient catalysts for transfer hydrogenation reactions. RSC Adv., 4(50), 26222-26230. doi:10.1039/c4ra02993cGĂŒlcemal, S., Gökçe, A. G., & Çetinkaya, B. (2013). Iridium(i) N-heterocyclic carbene complexes of benzimidazol-2-ylidene: effect of electron donating groups on the catalytic transfer hydrogenation reaction. Dalton Trans., 42(20), 7305-7311. doi:10.1039/c2dt32482bGĂŒlcemal, S., Gökçe, A. G., & Çetinkaya, B. (2013). N-Benzyl Substituted N-Heterocyclic Carbene Complexes of Iridium(I): Assessment in Transfer Hydrogenation Catalyst. Inorganic Chemistry, 52(18), 10601-10609. doi:10.1021/ic401626eJimĂ©nez, M. V., FernĂĄndez-Tornos, J., PĂ©rez-Torrente, J. J., Modrego, F. J., Garcı́a-Orduña, P., & Oro, L. A. (2015). Mechanistic Insights into Transfer Hydrogenation Catalysis by [Ir(cod)(NHC)2]+ Complexes with Functionalized N-Heterocyclic Carbene Ligands. Organometallics, 34(5), 926-940. doi:10.1021/om5013083JimĂ©nez, M. V., FernĂĄndez-Tornos, J., PĂ©rez-Torrente, J. J., Modrego, F. J., Winterle, S., Cunchillos, C., 
 Oro, L. A. (2011). Iridium(I) Complexes with Hemilabile N-Heterocyclic Carbenes: Efficient and Versatile Transfer Hydrogenation Catalysts. Organometallics, 30(20), 5493-5508. doi:10.1021/om200747kZhu, X.-H., Cai, L.-H., Wang, C.-X., Wang, Y.-N., Guo, X.-Q., & Hou, X.-F. (2014). Efficient and versatile transfer hydrogenation catalysts: Iridium (III) and ruthenium (II) complexes with 4-acetylbenzyl-N-heterocyclic carbenes. Journal of Molecular Catalysis A: Chemical, 393, 134-141. doi:10.1016/j.molcata.2014.06.004Maity, R., Hohloch, S., Su, C.-Y., van der Meer, M., & Sarkar, B. (2014). Cyclometalated Mono- and Dinuclear IrIIIComplexes with «Click»-Derived Triazoles and Mesoionic Carbenes. Chemistry - A European Journal, 20(32), 9952-9961. doi:10.1002/chem.201402838Ruff, A., Kirby, C., Chan, B. C., & O’Connor, A. R. (2016). Base-Free Transfer Hydrogenation of Ketones Using Cp*Ir(pyridinesulfonamide)Cl Precatalysts. Organometallics, 35(3), 327-335. doi:10.1021/acs.organomet.5b00864VĂĄzquez-Villa, H., Reber, S., Ariger, M. A., & Carreira, E. M. (2011). Iridium Diamine Catalyst for the Asymmetric Transfer Hydrogenation of Ketones. Angewandte Chemie International Edition, 50(38), 8979-8981. doi:10.1002/anie.201102732Wang, C., Pettman, A., Basca, J., & Xiao, J. (2010). A Versatile Catalyst for Reductive Amination by Transfer Hydrogenation. Angewandte Chemie International Edition, 49(41), 7548-7552. doi:10.1002/anie.201002944Wei, Y., Xue, D., Lei, Q., Wang, C., & Xiao, J. (2013). Cyclometalated iridium complexes for transfer hydrogenation of carbonyl groups in water. Green Chemistry, 15(3), 629. doi:10.1039/c2gc36619cWu, X., Li, X., Zanotti-Gerosa, A., Pettman, A., Liu, J., Mills, A. J., & Xiao, J. (2008). RhIII- and IrIII-Catalyzed Asymmetric Transfer Hydrogenation of Ketones in Water. Chemistry - A European Journal, 14(7), 2209-2222. doi:10.1002/chem.200701258Gawande, M. B., Guo, H., Rathi, A. K., Branco, P. S., Chen, Y., Varma, R. S., & Peng, D.-L. (2013). First application of core-shell Ag@Ni magnetic nanocatalyst for transfer hydrogenation reactions of aromatic nitro and carbonyl compounds. RSC Adv., 3(4), 1050-1054. doi:10.1039/c2ra22143hLiu, G., Gu, H., Sun, Y., Long, J., Xu, Y., & Li, H. (2011). Magnetically Recoverable Nanoparticles: Highly Efficient Catalysts for Asymmetric Transfer Hydrogenation of Aromatic Ketones in Aqueous Medium. Advanced Synthesis & Catalysis, 353(8), 1317-1324. doi:10.1002/adsc.201100017Nasir Baig, R. B., & Varma, R. S. (2013). Magnetic Silica-Supported Ruthenium Nanoparticles: An Efficient Catalyst for Transfer Hydrogenation of Carbonyl Compounds. ACS Sustainable Chemistry & Engineering, 1(7), 805-809. doi:10.1021/sc400032kSun, Y., Liu, G., Gu, H., Huang, T., Zhang, Y., & Li, H. (2011). Magnetically recoverable SiO2-coated Fe3O4nanoparticles: a new platform for asymmetric transfer hydrogenation of aromatic ketones in aqueous medium. Chem. Commun., 47(9), 2583-2585. doi:10.1039/c0cc03730cHaraguchi, N., Nishiyama, A., & Itsuno, S. (2010). Synthesis of polymer microspheres functionalized with chiral ligand by precipitation polymerization and their application to asymmetric transfer hydrogenation. Journal of Polymer Science Part A: Polymer Chemistry, 48(15), 3340-3349. doi:10.1002/pola.24118Marcos, R., Jimeno, C., & PericĂ s, M. A. (2011). Polystyrene-Supported Enantiopure 1,2-Diamines: Development of a Most Practical Catalyst for the Asymmetric Transfer Hydrogenation of Ketones. Advanced Synthesis & Catalysis, 353(8), 1345-1352. doi:10.1002/adsc.201000948Molla, R. A., Roy, A. S., Ghosh, K., Salam, N., Iqubal, M. A., Tuhina, K., & Islam, S. M. (2015). Polymer anchored ruthenium complex: A highly active and recyclable catalyst for one-pot azide–alkyne cycloaddition and transfer-hydrogenation of ketones under mild conditions. Journal of Organometallic Chemistry, 776, 170-179. doi:10.1016/j.jorganchem.2014.11.007Sugie, H., Hashimoto, Y., Haraguchi, N., & Itsuno, S. (2014). Synthesis of polymer-immobilized TsDPEN ligand and its application in asymmetric transfer hydrogenation of cyclic sulfonimine. Journal of Organometallic Chemistry, 751, 711-716. doi:10.1016/j.jorganchem.2013.09.008Wang, R., Wan, J., Ma, X., Xu, X., & Liu, L. (2013). Anchored [RuCl2(p-cymene)]2 in hybrid zirconium phosphate–phosphonate coated and pillared with double-stranded hydrophobic linear polystyrene as heterogeneous catalyst suitable for aqueous asymmetric transfer hydrogenation. Dalton Transactions, 42(18), 6513. doi:10.1039/c3dt33015jXu, X., Wang, R., Wan, J., Ma, X., & Peng, J. (2013). Phosphonate-containing polystyrene copolymer-supported Ru catalyst for asymmetric transfer hydrogenation in water. RSC Advances, 3(19), 6747. doi:10.1039/c3ra22057eGopiraman, M., Babu, S. G., Khatri, Z., Wei, K., Endo, M., Karvembu, R., & Kim, I. S. (2013). Facile and homogeneous decoration of RuO2 nanorods on graphene nanoplatelets for transfer hydrogenation of carbonyl compounds. Catalysis Science & Technology, 3(6), 1485. doi:10.1039/c3cy20735hGopiraman, M., Ganesh Babu, S., Khatri, Z., Kai, W., Kim, Y. A., Endo, M., 
 Kim, I. S. (2013). Dry Synthesis of Easily Tunable Nano Ruthenium Supported on Graphene: Novel Nanocatalysts for Aerial Oxidation of Alcohols and Transfer Hydrogenation of Ketones. The Journal of Physical Chemistry C, 117(45), 23582-23596. doi:10.1021/jp402978qBarati, B., Moghadam, M., Rahmati, A., Mirkhani, V., Tangestaninejad, S., & Mohammadpoor-Baltork, I. (2013). Ruthenium hydride complex supported on multi-wall carbon nanotubes for catalytic C–C bond formation via transfer hydrogenation. Journal of Organometallic Chemistry, 724, 32-39. doi:10.1016/j.jorganchem.2012.10.028Blanco, M., Álvarez, P., Blanco, C., JimĂ©nez, M. V., FernĂĄndez-Tornos, J., PĂ©rez-Torrente, J. J., 
 MenĂ©ndez, R. (2013). Enhanced Hydrogen-Transfer Catalytic Activity of Iridium N-Heterocyclic Carbenes by Covalent Attachment on Carbon Nanotubes. ACS Catalysis, 3(6), 1307-1317. doi:10.1021/cs4000798Gopiraman, M., Babu, S. G., Karvembu, R., & Kim, I. S. (2014). Nanostructured RuO2 on MWCNTs: Efficient catalyst for transfer hydrogenation of carbonyl compounds and aerial oxidation of alcohols. Applied Catalysis A: General, 484, 84-96. doi:10.1016/j.apcata.2014.06.032Chen, S.-J., You, H.-X., Vo-Thanh, G., & Liu, Y. (2013). Heterogeneous transfer hydrogenation over mesoporous SBA-15 co-modified by anionic sulfonate and cationic Ru(III) complex. Monatshefte fĂŒr Chemie - Chemical Monthly, 144(6), 851-858. doi:10.1007/s00706-012-0889-zCheng, T., Long, J., Liang, X., Liu, R., & Liu, G. (2014). Exploiting mesoporous silica matrixes for aqueous asymmetric transfer hydrogenation: morphology and surface chemistry dominate catalytic performance. Materials Research Bulletin, 53, 1-6. doi:10.1016/j.materresbull.2014.01.019Liu, P. N., Gu, P. M., Wang, F., & Tu, Y. Q. (2004). Efficient Heterogeneous Asymmetric Transfer Hydrogenation of Ketones Using Highly Recyclable and Accessible Silica-Immobilized Ru-TsDPEN Catalysts. Organic Letters, 6(2), 169-172. doi:10.1021/ol036065zLou, L.-L., Du, H., Shen, Y., Yu, K., Yu, W., Chen, Q., & Liu, S. (2014). Chiral Ir(I) complex supported on external surface passivated SBA-15 as heterogeneous catalyst for asymmetric transfer hydrogenation of aromatic ketones. Microporous and Mesoporous Materials, 187, 94-99. doi:10.1016/j.micromeso.2013.12.026Sarkar, S. M., Yusoff, M. M., & Rahman, M. L. (2014). Asymmetric Transfer Hydrogenation Catalyzed by Mesoporous MCM-41-Supported Chiral Ru-Complex. Journal of the Chinese Chemical Society, 62(2), 177-181. doi:10.1002/jccs.201400319Shen, Y., Chen, Q., Lou, L.-L., Yu, K., Ding, F., & Liu, S. (2010). Asymmetric Transfer Hydrogenation of Aromatic Ketones Catalyzed by SBA-15 Supported Ir(I) Complex Under Mild Conditions. Catalysis Letters, 137(1-2), 104-109. doi:10.1007/s10562-010-0341-0Zhang, D., Xu, J., Zhao, Q., Cheng, T., & Liu, G. (2014). A Site-Isolated Organoruthenium-/Organopalladium-Bifunctionalized Periodic Mesoporous Organosilica Catalyzes Cascade Asymmetric Transfer Hydrogenation and Suzuki Cross-Coupling. ChemCatChem, 6(10), 2998-3003. doi:10.1002/cctc.201402445Kantam, M. L., Rao, B. P. C., Choudary, B. M., & Sreedhar, B. (2006). Selective Transfer Hydrogenation of Carbonyl Compounds by Ruthenium Nanoclusters Supported on Alkali-Exchanged Zeolite Beta. Advanced Synthesis & Catalysis, 348(14), 1970-1976. doi:10.1002/adsc.200505497Corma, A. (2003). Water-resistant solid Lewis acid catalysts: Meerwein–Ponndorf–Verley and Oppenauer reactions catalyzed by tin-beta zeolite. Journal of Catalysis, 215(2), 294-304. doi:10.1016/s0021-9517(03)00014-9ZHU, Y., CHUAH, G., & JAENICKE, S. (2004). Chemo- and regioselective Meerwein–Ponndorf–Verley and Oppenauer reactions catalyzed by Al-free Zr-zeolite beta. Journal of Catalysis, 227(1), 1-10. doi:10.1016/j.jcat.2004.05.037Corma, A., LlabrĂ©s i Xamena, F. X., Prestipino, C., Renz, M., & Valencia, S. (2009). Water Resistant, Catalytically Active Nb and Ta Isolated Lewis Acid Sites, Homogeneously Distributed by Direct Synthesis in a Beta Zeolite. The Journal of Physical Chemistry C, 113(26), 11306-11315. doi:10.1021/jp902375nGao, Y., Jaenicke, S., & Chuah, G.-K. (2014). Highly efficient transfer hydrogenation of aldehydes and ketones using potassium formate over AlO(OH)-entrapped ruthenium catalysts. Applied Catalysis A: General, 484, 51-58. doi:10.1016/j.apcata.2014.07.010Hengne, A. M., Malawadkar, A. V., Biradar, N. S., & Rode, C. V. (2014). Surface synergism of an Ag–Ni/ZrO2 nanocomposite for the catalytic transfer hydrogenation of bio-derived platform molecules. RSC Advances, 4(19), 9730. doi:10.1039/c3ra46495dMuratsugu, S., Weng, Z., Nakai, H., Isobe, K., Kushida, Y., Sasaki, T., & Tada, M. (2012). Surface-assisted transfer hydrogenation catalysis on a Îł-Al2O3-supported Ir dimer. Physical Chemistry Chemical Physics, 14(46), 16023. doi:10.1039/c2cp43106hPupovac, K., & Palkovits, R. (2013). Cu/MgAl2O4as Bifunctional Catalyst for Aldol Condensation of 5-Hydroxymethylfurfural and Selective Transfer Hydrogenation. ChemSusChem, 6(11), 2103-2110. doi:10.1002/cssc.201300414Shimura, K., & Shimizu, K. (2012). Transfer hydrogenation of ketones by ceria-supported Ni catalysts. Green Chemistry, 14(11), 2983. doi:10.1039/c2gc35836kTang, X., Hu, L., Sun, Y., Zhao, G., Hao, W., & Lin, L. (2013). Conversion of biomass-derived ethyl levulinate into Îł-valerolactone via hydrogen transfer from supercritical ethanol over a ZrO2 catalyst. RSC Advances, 3(26), 10277. doi:10.1039/c3ra41288aDas, S., Heasman, P., Ben, T., & Qiu, S. (2016). Porous Organic Materials: Strategic Design and Structure–Function Correlation. Chemical Reviews, 117(3), 1515-1563. doi:10.1021/acs.chemrev.6b00439Zhang, D.-S., Chang, Z., Lv, Y.-B., Hu, T.-L., & Bu, X.-H. (2012). Construction and adsorption properties of microporous tetrazine-based organic frameworks. RSC Adv., 2(2), 408-410. doi:10.1039/c1ra00571eKuhn, P., Antonietti, M., & Thomas, A. (2008). Porous, Covalent Triazine-Based Frameworks Prepared by Ionothermal Synthesis. Angewandte Chemie International Edition, 47(18), 3450-3453. doi:10.1002/anie.200705710Palkovits, R., Antonietti, M., Kuhn, P., Thomas, A., & SchĂŒth, F. (2009). Solid Catalysts for the Selective Low-Temperature Oxidation of Methane to Methanol. Angewandte Chemie International Edition, 48(37), 6909-6912. doi:10.1002/anie.200902009Bavykina, A. V., Goesten, M. G., Kapteijn, F., Makkee, M., & Gascon, J. (2015). Efficient production of hydrogen from formic acid using a Covalent Triazine Framework supported molecular catalyst. ChemSusChem, 8(5), 809-812. doi:10.1002/cssc.201403173Bavykina, A. V., Rozhko, E., Goesten, M. G., Wezendonk, T., Seoane, B., Kapteijn, F., 
 Gascon, J. (2016). Shaping Covalent Triazine Frameworks for the Hydrogenation of Carbon Dioxide to Formic Acid. ChemCatChem, 8(13), 2217-2221. doi:10.1002/cctc.201600419Gunniya Hariyanandam, G., Hyun, D., Natarajan, P., Jung, K.-D., & Yoon, S. (2016). An effective heterogeneous Ir(III) catalyst, immobilized on a heptazine-based organic framework, for the hydrogenation of CO2 to formate. Catalysis Today, 265, 52-55. doi:10.1016/j.cattod.2015.10.037Hausoul, P. J. C., Broicher, C., Vegliante, R., Göb, C., & Palkovits, R. (2016). Solid Molecular Phosphine Catalysts for Formic Acid Decomposition in the Biorefinery. Angewandte Chemie International Edition, 55(18), 5597-5601. doi:10.1002/anie.201510681Park, K., Gunasekar, G. H., Prakash, N., Jung, K.-D., & Yoon, S. (2015). A Highly Efficient Heterogenized Iridium Complex for the Catalytic Hydrogenation of Carbon Dioxide to Formate. ChemSusChem, 8(20), 3410-3413. doi:10.1002/cssc.201500436Pilaski, M., Artz, J., Islam, H.-U., Beale, A. M., & Palkovits, R. (2016). N-containing covalent organic frameworks as supports for rhodium as transition-metal catalysts in hydroformylation reactions. Microporous and Mesoporous Materials, 227, 219-227. doi:10.1016/j.micromeso.2016.03.010Rozhko, E., Bavykina, A., Osadchii, D., Makkee, M., & Gascon, J. (2017). Covalent organic frameworks as supports for a molecular Ni based ethylene oligomerization catalyst for the synthesis of long chain olefins. Journal of Catalysis, 345, 270-280. doi:10.1016/j.jcat.2016.11.030Wang, W.-H., Ertem, M. Z., Xu, S., Onishi, N., Manaka, Y., Suna, Y., 
 Himeda, Y. (2015). Highly Robust Hydrogen Generation by Bioinspired Ir Complexes for Dehydrogenation of Formic Acid in Water: Experimental and Theoretical Mechanistic Investigations at Different pH. ACS Catalysis, 5(9), 5496-5504. doi:10.1021/acscatal.5b01090Goesten, M. G., Magusin, P. C. M. M., Pidko, E. A., Mezari, B., Hensen, E. J. M., Kapteijn, F., & Gascon, J. (2014). Molecular Promoting of Aluminum Metal–Organic Framework Topology MIL-101 by N,N-Dimethylformamide. Inorganic Chemistry, 53(2), 882-887. doi:10.1021/ic402198aAngersbach-Bludau, F., Schulz, C., Schöffel, J., & Burger, P. (2014). Syntheses and electronic structures of ÎŒ-nitrido bridged pyridine, diimine iridium complexes. Chem. Commun., 50(63), 8735-8738. doi:10.1039/c4cc03624gAhlsten, N., Bartoszewicz, A., & MartĂ­n-Matute, B. (2012). Allylic alcohols as synthetic enolate equivalents: Isomerisation and tandem reactions catalysed by transition metal complexes. Dalton Transactions, 41(6), 1660. doi:10.1039/c1dt11678aYamaguchi, K., Koike, T., Kotani, M., Matsushita, M., Shinachi, S., & Mizuno, N. (2005). Synthetic Scope and Mechanistic Studies of Ru(OH)x/Al2O3-Catalyzed Heterogeneous Hydrogen-Transfer Reactions. Chemistry - A European Journal, 11(22), 6574-6582. doi:10.1002/chem.200500539Sahoo, S., Lundberg, H., EdĂ©n, M., Ahlsten, N., Wan, W., Zou, X., & MartĂ­n-Matute, B. (2012). Single Site Supported Cationic Rhodium(I) Complexes for the Selective Redox Isomerization of Allylic Alcohols. ChemCatChem, 4(2), 243-250. doi:10.1002/cctc.201100321Carson, F., MartĂ­nez-Castro, E., Marcos, R., Miera, G. G., Jansson, K., Zou, X., & MartĂ­n-Matute, B. (2015). Effect of the functionalisation route on a Zr-MOF with an Ir–NHC complex for catalysis. Chemical Communications, 51(54), 10864-10867. doi:10.1039/c5cc03934gVan der Drift, R. C., Bouwman, E., & Drent, E. (2002). Homogeneously catalysed isomerisation of allylic alcohols to carbonyl compounds. Journal of Organometallic Chemistry, 650(1-2), 1-24. doi:10.1016/s0022-328x(02)01150-6Uma, R., CrĂ©visy, C., & GrĂ©e, R. (2003). Transposition of Allylic Alcohols into Carbonyl Compounds Mediated by Transition Metal Complexes. Chemical Reviews, 103(1), 27-52. doi:10.1021/cr0103165Sasson, Y., Zoran, A., & Blum, J. (1981). Reversible ion-pair extraction in a biphasic system. application in transition metal-catalyzed isomerization of allylic compounds. Journal of Molecular Catalysis, 11(2-3), 293-300. doi:10.1016/0304-5102(81)87017-
    corecore