2,024 research outputs found
Neutron Drops and Skyrme Energy-Density Functionals
The J=0 ground state of a drop of 8 neutrons and the lowest
1/2 and 3/2 states of 7-neutron drops, all in an external well, are
computed accurately with variational and Green's function Monte Carlo methods
for a Hamiltonian containing the Argonne two-nucleon and Urbana IX
three-nucleon potentials. These states are also calculated using Skyrme-type
energy-density functionals. Commonly used functionals overestimate the central
density of these drops and the spin-orbit splitting of 7-neutron drops.
Improvements in the functionals are suggested
Many-body effects in 16O(e,e'p)
Effects of nucleon-nucleon correlations on exclusive reactions on
closed-shell nuclei leading to single-hole states are studied using
( MeV, ) as an example. The quasi-hole wave
function, calculated from the overlap of translationally invariant many-body
variational wave functions containing realistic spatial, spin and isospin
correlations, seems to describe the initial state of the struck proton
accurately inside the nucleus, however it is too large at the surface. The
effect of short-range correlations on the final state is found to be largely
cancelled by the increase in the transparency for the struck proton. It is
estimated that the values of the spectroscopic factors obtained with the DWIA
may increase by a few percent due to correlation effects in the final state.Comment: 21 Pages, PHY-7849-TH-9
Field-induced segregation of ferromagnetic nano-domains in PrSrMnO, detected by Mn NMR
The antiferromagnetic manganite PrSrMnO was investigated
at low temperature by means of magnetometry and Mn NMR. A field-induced
transition to a ferromagnetic state is detected by magnetization measurements
at a threshold field of a few tesla. NMR shows that the ferromagnetic phase
develops from zero field by the nucleation of microscopic ferromagnetic
domains, consisting of an inhomogeneous mixture of tilted and fully aligned
parts. At the threshold the NMR spectrum changes discontinuously into that of a
homogeneous, fully aligned, ferromagnetic state, suggesting a percolative
origin for the ferromagnetic transition.Comment: Latex 2.09 language. 4 pages, 3 figures, 23 references. Submitted to
physical Review
Maternal mortality due to cardiovascular disease in the Netherlands:a 21-year experience
Objective Cardiovascular disorders are the leading cause of indirect maternal mortality in Europe. The aim of this study is to present an extensive overview concerning the specific cardiovascular causes of maternal death and to identify avoidable contributing care factors related to these deaths. Methods We assessed all cases of maternal death due to cardiovascular disorders collected by a systematic national confidential enquiry of maternal deaths published by the Dutch Maternal Mortality and Morbidity Committee on behalf of the Netherlands Society of Obstetrics and Gynaecology over a 21-year period (1993-2013) in the Netherlands. Results There were 96 maternal cardiovascular deaths (maternal mortality rate due to cardiovascular diseases 2.4/100,000 liveborn children). Causes were aortic dissection (n & x202f;= 20, 21%), ischaemic heart disease (n & x202f;= 17, 18%), cardiomyopathies (including peripartum cardiomyopathy and myocarditis, n & x202f;= 20, 21%) and (unexplained) sudden death (n & x202f;= 27, 28%). Fifty-five percent of the deaths occurred postpartum (n & x202f;= 55, 55%). Care factors that may have contributed to the adverse outcome were identified in 27 cases (28%). These factors were patient-related in 40% (pregnancy against medical advice, underestimation of symptoms) and healthcare-provider-related in 60% (symptoms not recognised, delay in diagnosis, delay in referral). Conclusion The maternal cardiovascular mortality ratio is low in the Netherlands and the main causes of maternal cardiovascular mortality are in line with other European reports. In a minority of cases, care factors that were possibly preventable were identified. Women with cardiovascular disease should be properly counselled about the risks of pregnancy and the symptoms of complications. Education of care providers regarding the incidence, presentation and diagnosis of cardiovascular disease during pregnancy is recommended
Lattice Simulations for Light Nuclei: Chiral Effective Field Theory at Leading Order
We discuss lattice simulations of light nuclei at leading order in chiral
effective field theory. Using lattice pion fields and auxiliary fields, we
include the physics of instantaneous one-pion exchange and the leading-order
S-wave contact interactions. We also consider higher-derivative contact
interactions which adjust the S-wave scattering amplitude at higher momenta. By
construction our lattice path integral is positive definite in the limit of
exact Wigner SU(4) symmetry for any even number of nucleons. This SU(4)
positivity and the approximate SU(4) symmetry of the low-energy interactions
play an important role in suppressing sign and phase oscillations in Monte
Carlo simulations. We assess the computational scaling of the lattice algorithm
for light nuclei with up to eight nucleons and analyze in detail calculations
of the deuteron, triton, and helium-4.Comment: 44 pages, 15 figure
Time-Dependent Current Partition in Mesoscopic Conductors
The currents at the terminals of a mesoscopic conductor are evaluated in the
presence of slowly oscillating potentials applied to the contacts of the
sample. The need to find a charge and current conserving solution to this
dynamic current partition problem is emphasized. We present results for the
electro-chemical admittance describing the long range Coulomb interaction in a
Hartree approach. For multiply connected samples we discuss the symmetry of the
admittance under reversal of an Aharonov-Bohm flux.Comment: 22 pages, 3 figures upon request, IBM RC 1971
Itinerant electron metamagnetism in LaCoSi
The strongly exchange enhanced Pauli paramagnet LaCoSi is found to
exhibit an itinerant metamagnetic phase transition with indications for
metamagnetic quantum criticality. Our investigation comprises magnetic,
specific heat, and NMR measurements as well as ab-initio electronic structure
calculations. The critical field is about 3.5 T for and 6 T for , which is the lowest value ever found for rare earth intermetallic
compounds. In the ferromagnetic state there appears a moment of about 0.2
/Co at the Co-sites, but sigificantly smaller moments at the 4d
and Co-sites.Comment: 11 pages, 5 figures, PRB Rapid Communication, in prin
Modern topics in theoretical nuclear physics
Over the past five years there have been profound advances in nuclear physics
based on effective field theory and the renormalization group. In this brief,
we summarize these advances and discuss how they impact our understanding of
nuclear systems and experiments that seek to unravel their unknowns. We discuss
future opportunities and focus on modern topics in low-energy nuclear physics,
with special attention to the strong connections to many-body atomic and
condensed matter physics, as well as to astrophysics. This makes it an exciting
era for nuclear physics.Comment: 8 pages, 1 figure, prepared for the Nuclear Physics Town Hall Meeting
at TRIUMF, Sept. 9-10, 2005, comments welcome, references adde
- …