32 research outputs found

    Laser-equipped gas reaction chamber for probing environmentally sensitive materials at near atomic scale

    Get PDF
    Numerous metallurgical and materials science applications depend on quantitative atomic-scale characterizations of environmentally-sensitive materials and their transient states. Studying the effect upon materials subjected to thermochemical treatments in specific gaseous atmospheres is of central importance for specifically studying a material’s resistance to certain oxidative or hydrogen environments. It is also important for investigating catalytic materials, direct reduction of an oxide, particular surface science reactions or nanoparticle fabrication routes. This manuscript realizes such experimental protocols upon a thermochemical reaction chamber called the "Reacthub" and allows for transferring treated materials under cryogenic & ultrahigh vacuum (UHV) workflow conditions for characterisation by either atom probe or scanning Xe(+)/electron microscopies. Two examples are discussed in the present study. One protocol was in the deuterium gas charging (25 kPa D(2) at 200°C) of a high-manganese twinning-induced-plasticity (TWIP) steel and characterization of the ingress and trapping of hydrogen at various features (grain boundaries in particular) in efforts to relate this to the steel’s hydrogen embrittlement susceptibility. Deuterium was successfully detected after gas charging but most contrast originated from the complex ion FeOD(+) signal and the feature may be an artefact. The second example considered the direct deuterium reduction (5 kPa D(2) at 700°C) of a single crystal wüstite (FeO) sample, demonstrating that under a standard thermochemical treatment causes rapid reduction upon the nanoscale. In each case, further studies are required for complete confidence about these phenomena, but these experiments successfully demonstrate that how an ex-situ thermochemical treatment can be realised that captures environmentally-sensitive transient states that can be analysed by atomic-scale by atom probe microscope

    Effect of Pore Formation on Redox-Driven Phase Transformation

    Full text link
    Solid-state redox-driven phase transformation is associated with mass loss, accommodated by vacancies that develop into pores. These influence the kinetics of the redox reactions and phase transformation. We have investigated the underlying structural and chemical mechanisms in and at pores in a combined experimental-theoretical study, using the reduction of iron oxide by hydrogen as a model system. The redox product (water vapor) accumulates in the pores and shifts the local equilibrium at the pore back towards the parent material - cubic-Fe1-xO (where x refers to Fe deficiency, space group Fm3-m). Our insights explain the sluggish reduction of cubic-Fe1-xO and improve our understanding of the kinetics of redox-driven phase transformations

    Controlled Doping of Electrocatalysts through Engineering Impurities

    Get PDF
    Fuel cells recombine water from H-2 and O-2 thereby can power, for example, cars or houses with no direct carbon emission. In anion-exchange membrane fuel cells (AEMFCs), to reach high power densities, operating at high pH is an alternative to using large volumes of noble metals catalysts at the cathode, where the oxygen-reduction reaction occurs. However, the sluggish kinetics of the hydrogen-oxidation reaction (HOR) hinders upscaling despite promising catalysts. Here, the authors observe an unexpected ingress of B into Pd nanocatalysts synthesized by wet-chemistry, gaining control over this B-doping, and report on its influence on the HOR activity in alkaline conditions. They rationalize their findings using ab initio calculations of both H- and OH-adsorption on B-doped Pd. Using this "impurity engineering" approach, they thus design Pt-free catalysts as required in electrochemical energy conversion devices, for example, next generations of AEMFCs, that satisfy the economic and environmental constraints, that is, reasonable operating costs and long-term stability, to enable the "hydrogen economy.

    Nanoporous gold thin films as substrates to analyze liquids by cryo-atom probe tomography

    Full text link
    Cryogenic atom probe tomography (cryo-APT) is being developed to enable nanoscale compositional analyses of frozen liquids. Yet, the availability of readily available substrates that allow for the fixation of liquids while providing sufficient strength to their interface, is still an issue. Here we propose the use of 1-2 microns thick binary alloy film of gold-silver (AuAg) sputtered onto flat silicon, with sufficient adhesion without an additional layer. Through chemical dealloying, we successfully fabricate a nanoporous substrate, with open-pore structure, which is mounted on a microarray of Si posts by lift out in the focused-ion beam, allowing for cryogenic fixation of liquids. We present cryo-APT results obtained after cryogenic sharpening, vacuum cryo-transfer and analysis of pure water on top and inside the nanoporous film. We demonstrate that this new substrate has the requisite characteristics for facilitating cryo-APT of frozen liquids, with a relatively lower volume of precious metals. This complete workflow represents an improved approach for frozen liquid analysis, from preparation of the films to the successful fixation of the liquid in the porous network, to cryo-atom probe tomography

    Controlling the Oxidation of Magnetic and Electrically Conductive Solid-Solution Iron-Rhodium Nanoparticles Synthesized by Laser Ablation in Liquids

    Get PDF
    This study focuses on the synthesis of FeRh nanoparticles via pulsed laser ablation in liquid and on controlling the oxidation of the synthesized nanoparticles. Formation of monomodal γ-FeRh nanoparticles was confirmed by transmission electron microscopy (TEM) and their composition confirmed by atom probe tomography (APT). For these particles, three major contributors to oxidation were analysed: (1) dissolved oxygen in the organic solvents, (2) the bound oxygen in the solvent and (3) oxygen in the atmosphere above the solvent. The decrease of oxidation for optimized ablation conditions was confirmed through energy-dispersive X-ray (EDX) and Mössbauer spectroscopy. Furthermore, the time dependence of oxidation was monitored for dried FeRh nanoparticles powders using ferromagnetic resonance spectroscopy (FMR). By magnetophoretic separation, B2-FeRh nanoparticles could be extracted from the solution and characteristic differences of nanostrand formation between γ-FeRh and B2-FeRh nanoparticles were observed

    Laser-equipped gas reaction chamber for probing environmentally sensitive materials at near atomic scale

    Get PDF
    Numerous metallurgical and materials science applications depend on quantitative atomic-scale characterizations of environmentally-sensitive materials and their transient states. Studying the effect upon materials subjected to thermochemical treatments in specific gaseous atmospheres is of central importance for specifically studying a material’s resistance to certain oxidative or hydrogen environments. It is also important for investigating catalytic materials, direct reduction of an oxide, particular surface science reactions or nanoparticle fabrication routes. This manuscript realizes such experimental protocols upon a thermochemical reaction chamber called the "Reacthub" and allows for transferring treated materials under cryogenic & ultrahigh vacuum (UHV) workflow conditions for characterisation by either atom probe or scanning Xe+/electron microscopies. Two examples are discussed in the present study. One protocol was in the deuterium gas charging (25 kPa D2 at 200°C) of a high-manganese twinning-induced-plasticity (TWIP) steel and characterization of the ingress and trapping of hydrogen at various features (grain boundaries in particular) in efforts to relate this to the steel’s hydrogen embrittlement susceptibility. Deuterium was successfully detected after gas charging but most contrast originated from the complex ion FeOD+ signal and the feature may be an artefact. The second example considered the direct deuterium reduction (5 kPa D2 at 700°C) of a single crystal wüstite (FeO) sample, demonstrating that under a standard thermochemical treatment causes rapid reduction upon the nanoscale. In each case, further studies are required for complete confidence about these phenomena, but these experiments successfully demonstrate that how an ex-situ thermochemical treatment can be realised that captures environmentally-sensitive transient states that can be analysed by atomic-scale by atom probe microscope

    Understanding the Degradation of a Model Si Anode in a Li Ion Battery at the Atomic Scale

    Get PDF
    To advance the understanding of the degradation of the liquid electrolyte and Si electrode, and their interface, we exploit the latest developments in cryo atom probe tomography. We evidence Si anode corrosion from the decomposition of the Li salt before charge discharge cycles even begin. Volume shrinkage during delithiation leads to the development of nanograins from recrystallization in regions left amorphous by the lithiation. The newly created grain boundaries facilitate pulverization of nanoscale Si fragments, and one is found floating in the electrolyte. P is segregated to these grain boundaries, which confirms the decomposition of the electrolyte. As structural defects are bound to assist the nucleation of Li rich phases in subsequent lithiations and accelerate the electrolyte s decomposition, these insights into the developed nanoscale microstructure interacting with the electrolyte contribute to understanding the self catalyzed accelerated degradation Si anodes and can inform new battery designs unaffected by these life limiting factor

    Interval forecasts based on regression trees for streaming data

    Get PDF
    In forecasting, we often require interval forecasts instead of just a specific point forecast. To track streaming data effectively, this interval forecast should reliably cover the observed data and yet be as narrow as possible. To achieve this, we propose two methods based on regression trees: one ensemble method and one method based on a single tree. For the ensemble method, we use weighted results from the most recent models, and for the single-tree method, we retain one model until it becomes necessary to train a new model. We propose a novel method to update the interval forecast adaptively using root mean square prediction errors calculated from the latest data batch. We use wavelet-transformed data to capture long time variable information and conditional inference trees for the underlying regression tree model. Results show that both methods perform well, having good coverage without the intervals being excessively wide. When the underlying data generation mechanism changes, their performance is initially affected but can recover relatively quickly as time proceeds. The method based on a single tree performs the best in computational (CPU) time compared to the ensemble method. When compared to ARIMA and GARCH modelling, our methods achieve better or similar coverage and width but require considerably less CPU time

    High-speed real-time dynamic economic load dispatch

    No full text
    A large amount of renewable energy penetration may cause a serious problem in load dispatch in the future power system, where the amount of controllable generators will decrease while disturbances increase. Therefore, a new economic load dispatch (ELD) method is required in order to make the best use of the ramp-rate capability of existing generators to cope with the disturbances caused by loads as well as by renewable energy generations. This paper proposes a new dynamic ELD method to meet the general requirements for real-time use in a future power system, where load following capability is critically limited. The method is also satisfactory from an economical point of view, and is suitable for high-speed online application due to fast and steady computation time. The proposed method has been successfully tested on several systems supplying a typical morning to noon demand profile
    corecore