Nanoporous gold thin films as substrates to analyze liquids by cryo-atom probe tomography

Abstract

Cryogenic atom probe tomography (cryo-APT) is being developed to enable nanoscale compositional analyses of frozen liquids. Yet, the availability of readily available substrates that allow for the fixation of liquids while providing sufficient strength to their interface, is still an issue. Here we propose the use of 1-2 microns thick binary alloy film of gold-silver (AuAg) sputtered onto flat silicon, with sufficient adhesion without an additional layer. Through chemical dealloying, we successfully fabricate a nanoporous substrate, with open-pore structure, which is mounted on a microarray of Si posts by lift out in the focused-ion beam, allowing for cryogenic fixation of liquids. We present cryo-APT results obtained after cryogenic sharpening, vacuum cryo-transfer and analysis of pure water on top and inside the nanoporous film. We demonstrate that this new substrate has the requisite characteristics for facilitating cryo-APT of frozen liquids, with a relatively lower volume of precious metals. This complete workflow represents an improved approach for frozen liquid analysis, from preparation of the films to the successful fixation of the liquid in the porous network, to cryo-atom probe tomography

    Similar works

    Full text

    thumbnail-image

    Available Versions