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Abstract

Si-anodes have long been candidates thanks to an expected ten-fold increase in capacity compared to
graphite. However, details of the mechanisms governing their degradation remain elusive, hindering
science-guided development of long-lived Si-based anodes. Here, to advance the understanding of the
degradation of the electrolyte and electrode, and their interface, we exploit the latest developments in cryo-
atom probe tomography to study a model, single crystal Si anode during cycling. We evidence anode
corrosion from the decomposition of the Li-salt before charge-discharge cycles even begin. The newly
created grain boundaries facilitate pulverization of nanoscale Si fragments, one is found floating in the
electrolyte. As structural defects are bound to assist the nucleation of Li-rich phases in subsequent
lithiations and accelerate the electrolyte’s decomposition, these insights into the developed nanoscale
microstructure interacting with the electrolyte contribute to understanding the self-catalysed/accelerated

degradation Si-anodes and can inform new battery designs unaffected by these life-limiting factors.
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To meet the rapidly increasing demand for Li-ion batteries for electric vehicles'?, tremendous
efforts have been devoted to discover cheap and abundant anode material that can replace graphite that is
in short supply’. A crystalline Si anode, which can offer nearly ten times the capacity of a commercial
graphite anode (Qs;= 3600 mAh g™ vs. Qgraphie = 372 mAh g')*, has emerged as an attractive anode material
for next-generation Li-ion batteries since the first development of the Li-Si anode by Lai in 1976°.
Compared to graphite, in which each of the six in-plane C atoms can only bond with one Li ion, each Si
atom can bond with up to 4.4 Li ions®. Thus, finding a path to exploiting Si as anode material can be a
revolutionary approach for reaching batteries with ultra-high energy density. Telsa Inc. has revealed its
plans to gradually increase the use of Si anode in its future batteries’, and Amprius Tech. Inc. recently
announced the shipment of its first commercially available Li-Si battery cells with energy density of 450
mWh g'®.

An efficient Si anode remains some sort of holy grail for rechargeable Li-ion batteries, and their widespread

use is hindered by rapid capacity fading”'’.

The enormous volume changes occurring during
lithiation/delithiation cycles (€.g. +300 % volume increase from Si to Li»Sis) result in irreversible damage*:
deformation and residual stresses accumulate and create an ensemble of structural defect features and their

respective chemical decoration states, including interfaces, dislocations, grain boundaries, and nano-cracks

forming within the Si anode. An array of approaches has been explored to overcome this critical issue. For
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example, the use of nano-composite/structured Si'!, including nanowires'>'?, core-shell'*!* and hollow
nanoparticles, and porous Si'®!?, has been reported to be effective for the enhanced suppression of the
initiation of mechanical fracture from the large volume changes.
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Most studies use techniques providing a bulk average or two-dimensional information™ -, which, even in

combination, cannot analyse the nanoscale compositional distribution and microstructural evolution of

112324 and cryogenic transmission electron microscopy (TEM)**® have

electrodes and electrolytes. In-situ
already revealed an undesirable removal or destruction of the passivating solid-electrolyte interphase (SEI),
and severe pulverization of Si nano/micro-particles from bulk Si during the expansion and shrinkage

cycles®. Despite impressive empirical advances, numerous fundamental aspects of the microstructural
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degradation hence remain elusive, making it impossible to devise targeted strategies to circumvent these
specific issues and enable a breakthrough in Si-based anodes. Elucidating the deformation that led to

mechanical failure has emerged as a crucial topic to achieve a high-capacity Si anode.
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Figure 1. a) Unique infrastructure for cryo-atom probe enabling the study. (b) SEM images of the LN2-
quenched anode containing the frozen-electrolyte surface; (c) the Si electrode where the (d) cryo-milled
pillar was made to prepare the (e) final APT specimen. Scale bars are S0pm in (b)&(c), 20 um in (d) and 1
pum in (e).

The combination of high-resolution microscopy of the fine scale of the microstructure that develops, and
the precise microanalysis of the electrode’s evolving composition, can be achieved by using the latest
development in cryogenic atom probe tomography (cryo-APT), Figure la. APT provides direct and three-
dimensional, near-atomically resolved analytical imaging of materials and has the ability to collect all

element irrespective of their mass. APT is underpinned by an intense electric field that provides controlled



removal of individual ions from a sharp, needle-shaped specimen. However, this field can cause outwards
electromigration of Li*” in battery materials, making impossible the detailed analysis of its distribution but
also affecting the overall data quality®®, which explains why battery materials have rarely been analysed by
APT?72, However, we demonstrated recently approaches enabling analysis of lithiated anode and cathode
materials®®, and delithiated samples still bear traces of crucial processes taking place during battery
operation.

Here, we leverage cryo-APT for the first time to obtain compositional mapping of Li-ion battery materials,
the abutting electrolyte and the solid-liquid interface between the two at increasing number of charge-
discharge cycles. Custom cells were disassembled inside a N, glovebox (H,O and O, < 10ppm)**, see
Methods. The collected Si anode with the electrolyte were immediately plunge-frozen in liquid-N; (LN>),
then transferred by using the cryogenically-cooled, ultra-high-vacuum suitcases into a scanning-electron
microscope / Xe-plasma focused ion beam (SEM/PFIB) for imaging and cryogenic specimen preparation,
Figure 1b—c. APT specimens of the electrolyte and electrode were prepared at cryogenic temperature using
the method we introduced in Ref.*, Figure 1d—e.

The location of the cryo-APT analyses of the uncycled electrode and electrolyte, Figure 2c, are indicatively
marked in Figure 1b. Within the electrolyte, individual, isolated Si ions are already detected. We conducted
a cryo-APT analysis of the frozen raw electrolyte on a different metallic substrate (Au) that shows no Si
ion (see Figure S1-S4). These additional analyses confirm that dissolved Si ions originated from the
corrosion of the Si anode. Veith et al. observed non-electrochemically driven Si-O and Si-F bonds on a Si
anode soaked in a similar electrolyte®. Si-O groups can react with HF generated by hydrolyzed or
thermally-decomposed LiPFs electrolyte®, resulting in the dissolution of Si ions and two additional H,O
molecules, which trigger further HF generation and a self-sustaining corrosive cycle’’ . The hydrolysis
could be initiated by residual atmospheric moisture during cell assembly*’. Degradation of the anode and
the electrolyte hence start even before cycling, with any oxygen-containing Si species that generate more

water and accelerate the failure of the Si battery cell.
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Figure 2. (a) Schematic of the Si electrode and cycling process. (b) Voltage vs. current curves of the Si(111)
anode in a Li-Si cell. (c) cryo-APT analysis of the electrolyte and anode before cycling; scale bars are 20
nm. (d) cryo-APT reconstructed atom map of the 1-cycle electrolyte; the blue iso-surface delineates regions
containing at least 25 at.% Si; scale bar is 20 nm. Movie (#1), the corresponding mass spectra and additional
analyses can be found in SI; (i) is a close-up showing dissolved Si ions (scale bar = 2 nm) and (ii) is a
delaminated Si debris in the electrolyte (scale bar = 5 nm). Green, blue, and yellow dots represent
reconstructed carbonate species, Si and SiOx compounds, respectively. (e) transmission-electron
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micrograph of the 10-cycled Si anode along the [110] zone axis of the single-crystal, along with Fast Fourier
Transformation (FFT) patterns from different regions highlighted by coloured boxes. A white scale bar is
20 nm. (f) 3D reconstructed atom map of the Si electrode after 25-cycles (scale bar = 20 nm). Blue, yellow,
and pink dots represent reconstructed Si, SiOx, and Li, respectively. Movie (#2) and mass spectra of
corresponding dataset are presented in the SI. Inset shows the extracted Si grain boundary with the 2D
contour density map of P atoms (scale bar = 5 nm).

After 1 cycle, Figure 1d, cryo-APT reveals also dissolved isolated Si ions, accompanied by an approx.10-
nm pulverized Si fragment covered with an oxide shell (see Figure S5 and S6). Such a fragment could
potentially block the pores of the separator for Li-ion diffusion, raising cell impedance and deteriorating
the rate performance of the battery. The presence of the SiOy-species at the surface support the hypothesis
that the dissolution was associated to the formation of HF.

Already after 10-cycles, TEM was performed on the dried electrode after removal of the electrolyte and
thorough cleaning, Figure 2e, complemented by additional APT experiments (Figure S7-S13). We
evidences that the originally single crystalline Si has transformed into a nano-crystalline microstructure,
containing numerous nanoscale grains and grain boundaries with different crystallographic orientations that
have been formed during the lithiation/delithiation process, confirming previous reports*'. The volume
change associated with the formation of Li-rich phases imposes strong compressive loading on the silicon
matrix*. Indentation of Si single-crystals has demonstrated that the breaking of covalent Si-Si bonds injects

a high number of vacancies in the crystal and results in amorphization**

, also recently reported
experimentally during battery cycling®. Upon relaxation during delithiation, depending on the rate, new
crystals nucleate with no orientation relationship with the surrounding crystal matrix**. The discharging
rate must influence this process.

After 25 cycles, Figure 2f, cryo-APT analysis of the very surface of the anode contains two Si grains, as
confirmed by atom probe crystallography*® (Figure S14), and a faceted grain boundary. No chemicals
expected from the SEI layer (LiCO,, LiOH, LiF) are observed at the interface (see Movie #3), which can
be attributed to the high reversibility of the SEI layer on Si anodes**’*!. On the surface we find several
isolated nanoscale islands rich in SiOyx species. Such oxides promote the formation of HF which corrodes

the Si, passivate the Si anode and act as a mechanical clamping layer that restricts swelling***°. SiOx can
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store Li ions (Qsio = 1543 mAh g')*® with lower volume expansion (approx. 120%) when irreversibly
lithiated®!, that can cause stress build-up at the interface and facilitate crack initiation®2, decohesion and
pulverization, explaining the presence of SiOx on the Si fragment’s surface in Figure 2d.

After full delithiation, 20-30nm below the surface, Li (8 =1 appm) is still detected within the Si matrix, as
readily visible from the corresponding mass spectrum, Figure 2f. Density-functional theory predicts an
attraction between vacancies and Li in Si’*, which can combine with a strong Coulomb attraction between
an electron-rich vacancy and the electropositive Li. The image Li atoms are hence likely trapped by
remaining vacancies injected under plastic loading.

At the grain boundary, Li does not appear segregated, conversely to P, that is even seen partitions to specific
facets and to the facet junction indicated by a black arrow (see Figure S15). This distribution was previously
suggested to be associated to local strain®*. P can diffuse along grain boundaries in Si°, and its segregation
can be energetically favourable due to the passivation of dangling bonds®®, which modifies the
conductivity®’. In addition, atomistic simulations have indicated that the combined effect of the presence of
P and a stress concentrator (i.e. a grain boundary) decreases the fracture strength of Si-nanowires*®. Lastly,
the presence of P (209 11 appm), originally from the LiPFs salt, also suggests the liberation of F and the
facile formation of HF that is a known embirittler of polycrystalline-Si through void formation along grain
boundaries™. These effects collectively make these newly created grain boundaries particularly brittle and
critical to the lifetime of the Si-anode.

To summarize, cryo-APT allowed us to track the evolution of the three-dimensional, nanoscale elemental
distributions of species in the electrolyte, a model Si anode and their interface over increasing charge-
discharge cycles. We provide measured data that advance the understanding of the degradation mechanism
— or actually degradation mechanisms — and emphasise the often-overlooked role of microstructural defects
created and evolving throughout the battery operation lifetime. In addition, the nucleation of the LixSiy
(metastable) phases** during the first cycle can be assumed to be homogeneous, occurring randomly across
the surface of the anode. However, the combined presence of crystalline defects and remaining Li-
impurities in the anode will undoubtedly assist heterogeneous nucleation of these phases during subsequent
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lithiation, potentially enhanced by accelerated diffusion of Li through structural defects®*®!. Segregants can
energetically destabilize grain boundaries, already weakened by HF*’, or form space charges, that can
favour decohesion. Nucleation in the parts of the microstructure with a high density of defects localizes the
volume expansion to mechanically weaker regions, thus facilitating the pulverization of fragments from the
anode. This combination of (electro)chemical reactions, phase transformation, and mechanical failure,
assisted by the localised decomposition of the electrolyte, accelerates the delamination/mass loss and
localized lithiation causing fast loss of capacity”' (see Figure S16). Strategies for the development of robust
and durable Si-based anodes for next-generation Li-ion batteries can draw from our findings on the
degradation of Si electrode —the role of the newly formed grain boundaries that may be exploited through
segregation, but also the details of the electrolyte degradation that can guide the selection of P-free and F-
free salts and avoiding exposure to moisture during fabrication, which can be difficult to achieve in large-

scale production.
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Methods
Materials

Silicon wafer (0.5 mm thick, no dopant, (111)) and an electrolyte of 1 M LiPFs with a mixture of ethylene
carbonate (EC) and diethyl carbonate (DEC) (1:1, v/v) were received from Sigma-Aldrich. Metallic lithium
was purchased from MTI Corp. USA. A Swagelok derived cell consisting of a polyether ether ketone (PEEK)

housing is described in our previous report®’.

Battery Assembly and Cycling

Si wafer was cut into 3.0 mm disks by laser-cutting under Argon gas protection. The obtained Si disks were
washed using ultrapure water (Milli-Q) and 2-propanol (HPLC Plus, 99.9%, Sigma-Aldrich) to remove
contaminations (e.g. dust) on the surface from the cutting process. Li chips were punched into disks with
a diameter of 3 mm as the counter electrode without further treatment. To preserve the SEl layer on the
surface of Si wafer, instead of using a typical Celgard or glassfiber separator, we opt for a ring-shaped
spacer (0.5 mm thick) made of polytetrafluoroethylene (PTFE) as a separator. In this way, the Si surface
including the SEIl layer at the middle area of the Si disk could keep intact without undergoing a peeling-off
procedure during the cell disassembly. The Li/Si cells were built using the customized Swagelok-type cell
in an argon-filled MBraun glovebox (H,0 and O, < 5 ppm). After cell assembly, Li/Si cells were subjected
to cyclic voltammetry (CV) cycling between 0.01 — 3.0 V at a scan rate of 0.2 mV/s using a BioLogic MPG-

200 potentiostat. All the cells were stopped after 0, 1, 10, 25 cycles at the delithiation state (see Fig. S17).

Sample preparation

After cycling, the cell was disassembled in a nitrogen filled glove-box (<10 ppm H,0 and O;). Without
washing, the Si disk was mounted on a Cu clip and was rapidly plunged into liquid nitrogen, followed by
loading on a scanning-electron microscope/Xe-plasma focused ion beam (SEM/p-FIB) (Helios PFIB,

Thermo-Fisher, Eindhoven, Netherlands) stage. Subsequently, the Si disk was transferred into the cryo-p-

18



FIB chamber using the ultra-high vacuum transfer suitcase (10 mbar, -190 °C) (VSN-40, Ferrovac GmbH,
Zurich, Switzerland) to avoid the sample exposure to air. An illustration of environmentally sensitive

sample preparation/transfer for FIB/APT is shown in Fig. S18.

Cryo-APT specimen preparation

The cryo-p-FIB stage (Gatan C1001, Gatan Inc., California, USA) was pre-cooled to -190 °C by cold N; gas.
A clean pillar from frozen electrolyte and Si anode was prepared using the in-situ non lift-out protocol
described in references3*%8. After the height of the post had reached 50 um, progressively the frozen
sample were sharpened into APT specimen using annular milling patterns (e.g. specimen-radius less than
100 nm). Scanning electron micrographs were taken at 5-15 kV and 1.6-2.3 nA to avoid charging effects

and the e-beam-induced diffusion/reaction (see Fig. S19 and S20).

APT measurement

Atom probe data were acquired from 5000 XS instrument (CAMECA, Madison, USA) in pulsed laser mode
with laser energy of 20-40 pJ for the cold Si anode (80 pJ for the frozen electrolytes) and rate of 100 kHz
at 1 % detection rate. The base temperature was set to 60 K throughout the measurement and the applied
direct current was adjusted to control the stable evaporation (see Fig. S21). The atom map reconstruction

and data analysis were done using AP SUITE 6.1 software developed by CAMECA.
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Fig. S1. (a) SEM image of frozen 0-cycle Si anode. (b) In-situ annular milling process. (c) Final APT
specimens. 3D atom maps of the 0-cycle specimen: (d) electrolyte and (e) single crystal Si(111)
anode. Scale bars are 20 nm. (f) corresponding mass spectrum of each. Here in the electrolyte
mass-spectrum, no Li peaks were measured; however, we detected a strong peak at 19-21 Da
which could be originated from LiC* (or F*) and LiCHx" (or HxF/LiOx*) species. Nevertheless, herein,
no segregation behavior of carbonate species nor no LiPFg salt are detected. The decomposed
C:0 atomic ratio from the acquired mass spectrum is 1.07 which supports that the frozen
specimen is the electrolyte compound. The molecular formulae of mixed organic solvent of ethyl
carbonate (EC) and dimethyl carbonate (DMC) compounds are C303H4 and C303Hg, respectively,
so it is difficult to conclude which molecules they are. Apart from that, as expected, the atom
map of the as-received single-crystal Si anode shows [111] crystallographic pole at the center
with Si(111) atomic planes readily visible.
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Fig. S2. (a) Cryo-APT specimen preparation from a raw electrolyte (non-contact with Si). (b) 3D
atom map of a raw electrolyte (a scale bar = 20 nm) and (c) corresponding mass spectrum. Note
that there are no Si peaks. Nano-porous gold instead of Si was used as a substrate to hold the
frozen raw liquid electrolyte for cryo-APT measurement. The reconstructed Li ions (6,7 Da) are
segregated locally implying that there was a phase separation of the Li salt during freezing. In the
mass spectrum of the pristine (non-Si contacted) electrolyte, notable peaks at 90-85 Da are
measured which originates to the C303Hx* molecular species.
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Fig. S4. Background corrected mass spectra of non-Si, Si-contacted and 1-cycled electrolyte. Note
that peaks at 14.5 Da aren’t likely from CO** state. The second ionization energy of CO requires
41.8 +0.5 eV (for CO*= 14.07 +0.05 eV)! whereas ionization energies of Si*and Si** are 8.15 and
16.34 eV. Therefore, detecting CO**is extremely unlikely.
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Fig. S5. APT analysis of 1-cycled electrolyte sample. (a) Mass spectrum of cycled electrolyte APT
dataset. Note that there is a strong peak split at 28 Da originated to overlapped peaks of CO* and
Si* ions, which is commonly seen in the CO measurement?. Inset shows that corresponding 3D
atom map. (b) Extracted region of interest (5x5x15 nm?3) from Fig. 2d. (c) ions distributions:
C,Hs*(green), Si*(blue), and Si>O* (orange). (d) 1D compositional profiles along the Si nano-
fragment in the measurement direction. Note that O enrichment at the interface can be observed

(orange arrow).
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Fig. S6. Mass spectrum of each extracted volume from 1-cycled electrolyte APT dataset (Fig. 2d).
Blue lines on the mass spectrum indicate a ratio of natural abundance isotopes of silicon.
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APT specimen and TEM lamella preparation from the 10-cycled Si anode

After the cycling for 10 times, the Si anode was collected and rinsed with 1-methyl-2-pyrrolidone
(NMP) (anhydrous 95%, Sigma Aldrich) solvent inside the N, glovebox. After removing surface
residuals, it was dried in a vacuum chamber attached to the glovebox for 1 hr. Subsequently, the
sample was loaded to the precision etching coating system (PECS) Il (Model 685, Gatan). A 50 nm
layer of Cr was deposited on the sample for surface protection. The coated sample was loaded
to the dual-beam FIB (FEI Helios Nanolab 600) chamber. APT specimens from the 10-cycled
sample were prepared using Ga-ion milling according to ref.3. Three distinguishable interest
regions (topmost surface, near-surface, and bulk) were fabricated into the APT specimens. For
TEM lamella, first, the surface was coated additionally with e- and Ga-ion beam-induced Pt/C

layer. Then the lamella was obtained mostly following the protocol described in ref.?.
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Fig. S7. APT specimen preparation of the 10-cycle Si anode. The disassembled electrode was
coated with PECs-Cr layer (~50 nm). (a) 52°-tilted Si anode. (b) FIB/SEM surface image shows that
there are delaminated layers of residuals (i.e. salt (please see APT/TEM results in S9 and 11)). (c)-
(e) Front and back-side cuts. (f) L-shape cut to free the lamella. (g) Mounted APT sample on a
commercial Si micro-post. (h) A final APT specimen.
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Cr layer
+ dried electrolyte

10-cycled Si

Fig. S8. A cross-sectional FIB/SEM image of the 10-cycled Si anode (scale bar = 500 nm). The
colored triangles indicate the regions of three representative APT measurements that are
presented in Fig. S9.
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Fig. S9. APT analysis (3D atom map, tomogram, and V-curves) of (a) salt layer, (b) near-surface Si,
(c) bottom Si from the 10-cycled Si sample. Note that ambiguous peaks in the APT dataset from
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the salt layer were not ranged, for instance F (LiC) vs. H3O or Li>C vs. CoH; etc.
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Fig. $10. TEM lamella preparation of the 10-cycled Si sample. (a) FIB/SEM surface image near the
APT-site-lift-out region. (b) e-beam Pt/C deposition. (c) ion-beam Pt/C deposition. (d) & (e) Front-
side and back-side cuts followed by the L-cut. (f) Attachment to a micro-manipulator. (g) FIB/SEM
image of a commercial TEM Cu grid. (h) Mounted TEM lamella on the grid. (i) A final TEM lamella
after the thinning process.
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TEM measurement

TEM characterization of the cycled Si anode was performed in a JEM-2200FS TEM (JEOL)
instrument operating at 200 kV. TEM images were acquired using a TemCam-XF416 pixelated
scintillator-based complementary metal-oxide-semiconductor (CMOS) detector from Tietz Video
and Image Processing Systems (TVIPS). We used Gatan Microscopy Suite® 3 Software to process
TEM images, e.g. Fast-Fourier Transformation (FFT) of high-resolution TEM (HRTEM) images. The
lamella specimen of the 10-cycled Si anode was titled close to Si [110] zone for the high resolution
imaging of lattice fringes. Fig. S11a shows the interfacial regions between the Pt/C protection,
the PECS-Cr, the electrolyte residuals, and the 10-cycled Si anode. Regions of interest have been
highlighted in Fig. S11b to show local structure of the electrolyte residuals and the interface
between the electrolyte residuals and the Si anodes. Fig. S12&13 present a variety of different

defect structures observed in the 10-cycled Si anode.

31



10-cycled Si

Fig. 20,21

Si (110)

Fig. S11. TEM analysis of the 10-cycle Si. (a) Bright-field (BF) from the top-surface region and (b)
high-resolution TEM (HRTEM) images of two small regions as marked with squares in (a). Inset
image in a shows the complex diffraction patterns with amorphous ring (yellow) and un-

identified diffraction points (red). The fast-Fourier transformation (FFT) patterns are measured
along [110] Si zone axis.
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Fig. S12. HRTEM analysis of the 10-cycle Si. (a) Si region with a clear a single-phase Si[110] FFT
pattern. (b) Defect sites at near-surface. (c) Defect sites within the Si anode.
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Fig. S13. HRTEM analysis of the 10-cycle Si. Note that these FFT patterns show different types of
defects.

Fig. S14. (a) 3D atom map of the 25-cycle Si anode with Si ion density map. (b) 90°-rotated 3D
atom map of 25-cycle Si anode (from Fig. 2f); a scale bar is 20 nm.
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Fig. S15. 3D atomic distributions of Si, Si>0, P, H, H,, and Hs species of the 25-cycled Si. It clearly
shows that the peak at 31 Da is not related to H-Si peaks but different species (i.e. P). Note that
O does not appear at region where P atoms locate.
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Fig. S17. The voltage profiles of the Li/Si cells after (a) 1, (b) 10, and (c) 25 cycles. Li/Si cells show
similar electrochemical behavior during the CV scanning. From the insert figure in panel (b) and
(c), evident cathodic capacity fading could be observed during the consecutive 10 and 25 cycles,
respectively.
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plunge frozen in LN, and
loaded to pre-cooled

environmental suitcase

Fig. S18. The protocol of cryo-APT experiment. A battery cell was disassembled inside a N3
glovebox and the interested cell was mounted on the Cu clip and immediately quenched into LN,.
Subsequently, the clip was loaded to the pre-cooled UHV carry suitcase (-190 °C and 10 mbar)
and transferred to Gatan cryo-stage installed plasma-FIB. After final milling, the cold specimen
was transferred back to the suitcase maintaining cryo-UHV conditions and was detached from
the PFIB and mounted onto a LEAP 5000 XS atom probe system. Finally, the puck was transferred
under cryo-UHV conditions to the atom probe analysis chamber. Details on the specific home-
made installation are described in Ref.>.
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Fig. $19. Xe-plasma FIB/SEM image of frozen liquid electrolyte on the 1-cycle Si electrode. A white
scale bar is 100 um.

Fig. S20. APT specimen preparation of frozen liquid electrolyte/cryo-Si sample. The Halpin
protocol was adapted to obtain a pillar shape®. (a) First, an ion-beam-circle pattern of outer
diameter of 200 um and inner diameter of 100 um was set at 30 kV and 1.3 pA for 10 min. (b)-(e)
Then patterns of outer and inner diameters were gradually reduced until inner diameters reach
30 um with a depth of 50 um. (f) The ion-beam current was set at 60 nA and the pillar was milled
with a circle pattern (outer/inner = 50/10 um) further down to fabricate into a toblerone shape.
(g) Once a typical APT specimen geometry was obtained, the ion-beam current was reduced to 1
nA. (f) The final milling process was done at ion-beam current of 0.3 nA.
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