231 research outputs found

    Calibration of LACIS as a CCN detector and its use in measuring activation and hygroscopic growth of atmospheric aerosol particles

    Get PDF
    A calibration for LACIS (Leipzig Aerosol Cloud Interaction Simulator) for its use as a CCN (cloud condensation nuclei) detector has been developed. For this purpose, sodium chloride and ammonium sulfate particles of known sizes were generated and their grown sizes were detected at the LACIS outlet. From these signals, the effective critical super-saturation was derived as a function of the LACIS wall temperature. With this, LACIS is calibrated for its use as a CCN detector. The applicability of LACIS for measurements of the droplet activation, and also of the hygroscopic growth of atmospheric aerosol particles was tested. The activation of the urban aerosol particles used in the measurements was found to occur at a critical super-saturation of 0.46% for particles with a dry diameter of 75 nm, and at 0.42% for 85 nm, respectively. Hygroscopic growth was measured for atmospheric aerosol particles with dry diameters of 150, 300 and 350 nm at relative humidities of 98 and 99%, and it was found that the larger dry particles contained a larger soluble volume fraction of about 0.85, compared to about 0.6 for the 150 nm particles

    Carrier-induced ferromagnetism in n-type ZnMnAlO and ZnCoAlO thin films at room temperature

    Full text link
    The realization of semiconductors that are ferromagnetic above room temperature will potentially lead to a new generation of spintronic devices with revolutionary electrical and optical properties. Transition temperatures in doped ZnO are high but, particularly for Mn doping, the reported moments have been small. We show that by careful control of both oxygen deficiency and aluminium doping the ferromagnetic moments measured at room temperature in n-type ZnMnO and ZnCoO are close to the ideal values of 5mB and 3mB respectively. Furthermore a clear correlation between the magnetisation per transition metal ion and the ratio of the number of carriers to the number of transition metal donors was established as is expected for carrier induced ferromagnetism for both the Mn and Co doped films. The dependence of the magnetisation on carrier density is similar to that predicted for the transition temperature for a dilute magnetic semiconductor in which the exchange between the transition metal ions is through the free carriers.Comment: 14 pages pd

    Multi-subband effect in spin dephasing in semiconductor quantum wells

    Full text link
    Multi-subband effect on spin precession and spin dephasing in nn-type GaAs quantum wells is studied with electron-electron and electron-phonon scattering explicitly included. The effects of temperature, well width and applied electric field (in hot-electron regime) on the spin kinetics are thoroughly investigated. It is shown that due to the strong inter-subband scattering, the spin procession and the spin dephasing rate of electrons in different subbands are almost identical despite the large difference in the D'yakonov-Perel' (DP) terms of different subbands. It is also shown that for quantum wells with small well width at temperatures where only the lowest subband is occupied, the spin dephasing time increases with the temperature as well as the applied in-plane electric field until the contribution from the second subband is no longer negligible. For wide quantum wells the spin dephasing time tends to decrease with the temperature and the electric field.Comment: 6 pages, 4 figures in eps forma

    Hygroscopic growth and activation of HULIS particles: experimental data and a new iterative parameterization scheme for complex aerosol particles

    Get PDF
    International audienceThe hygroscopic growth and activation of two HULIS and one Aerosol-Water-Extract sample, prepared from urban-type aerosol, were investigated. All samples were extracted from filters, redissolved in water and atomized for the investigations presented here. The hygroscopic growth measurements were done using LACIS (Leipzig Aerosol Cloud Interaction Simulator) together with a HH-TDMA (High Humidity Tandem Differential Mobility Analyzer). Hygroscopic growth was determined for relative humidities up to 99.75%. The critical diameters for activation were measured using LACIS for supersaturations between 2 and 10 per mill. All three samples showed a similar hygroscopic growth behaviour, and the two HULIS samples also were similar in their activation behavior, while the Aerosol-Water-Extract turned out to be more CCN active than the HULIS samples. The experimental data was used to derive parameterizations for the hygroscopic growth and activation of HULIS particles. The concept of ?ion (Wex et al., 2007a) and the Szyszkowski-equation (Szyszkowski, 1908; Facchini et al., 1999) were used for parameterizing the Raoult and the Kelvin (surface tension) terms of the Köhler equation, respectively. This concept proved to be very successful for the HULIS samples in the saturation range from relative humidities larger than 98% up to activation. However it failed for the Aerosol-Water extract

    Calculations of giant magnetoresistance in Fe/Cr trilayers using layer potentials determined from {\it ab-initio} methods

    Full text link
    The ab initio full-potential linearized augmented plane-wave method explicitly designed for the slab geometry was employed to elucidate the physical origin of the layer potentials for the trilayers nFe/3Cr/nFe(001), where n is the number of Fe monolayers. The thickness of the transition-metal ferromagnet has been ranged from n=1n=1 up to n=8 while the spacer thickness was fixed to 3 monolayers. The calculated potentials were inserted in the Fuchs-Sondheimer formalism in order to calculate the giant magnetoresistance (GMR) ratio. The predicted GMR ratio was compared with the experiment and the oscillatory behavior of the GMR as a function of the ferromagnetic layer thickness was discussed in the context of the layer potentials. The reported results confirm that the interface monolayers play a dominant role in the intrinsic GMR.Comment: 17 pages, 7 figures, 3 tables. accepted in J. Phys.: Cond. Matte

    Vortex lattices in strong type-II superconducting two-dimensional strips

    Full text link
    We show how to calculate semi-analytically the dense vortex state in strong type-II superconducting nanostructures. For the specific case of a strip, we find vortex lattice solutions which also incorporate surface superconductivity. We calculate the energy cost to displace individual vortex rows parallel to the surfaces and find that this energy oscillates with the magnetic field. Remarkably, we also find that, at a critical field H∗H^* below Hc2H_{c2}, this ''shear'' energy becomes strictly zero for the surface rows due to an unexpected mismatch with the bulk lattice.Comment: Title, abstract, and some text paragraphs have been rewritte

    Grain boundary effects on magnetotransport in bi-epitaxial films of La0.7_{0.7}Sr0.3_{0.3}MnO3_3

    Full text link
    The low field magnetotransport of La0.7_{0.7}Sr0.3_{0.3}MnO3_3 (LSMO) films grown on SrTiO3_3 substrates has been investigated. A high qualtity LSMO film exhibits anisotropic magnetoresistance (AMR) and a peak in the magnetoresistance close to the Curie temperature of LSMO. Bi-epitaxial films prepared using a seed layer of MgO and a buffer layer of CeO2_2 display a resistance dominated by grain boundaries. One film was prepared with seed and buffer layers intact, while a second sample was prepared as a 2D square array of grain boundaries. These films exhibit i) a low temperature tail in the low field magnetoresistance; ii) a magnetoconductance with a constant high field slope; and iii) a comparably large AMR effect. A model based on a two-step tunneling process, including spin-flip tunneling, is discussed and shown to be consistent with the experimental findings of the bi-epitaxial films.Comment: REVTeX style; 14 pages, 9 figures. Figure 1 included in jpeg format (zdf1.jpg); the eps was huge. Accepted to Phys. Rev.

    Theory of Umklapp-assisted recombination of bound excitons in Si:P

    Full text link
    We present the calculations for the oscillator strength of the recombination of excitons bound to phosphorous donors in silicon. We show that the direct recombination of the bound exciton cannot account for the experimentally measured oscillator strength of the no-phonon line. Instead, the recombination process is assisted by an umklapp process of the donor electron state. We make use of the empirical pseudopotential method to evaluate the Umklapp-assisted recombination matrix element in second-order perturbation theory. Our result is in excellent agreement with the experiment. We also present two methods to improve the optical resolution of the optical detection of the spin state of a single nucleus in silicon.Comment: 9 pages, 6 EPS figures, Revtex

    Ground state of a double-exchange system containing impurities: bounds of ferromagnetism

    Full text link
    We study the boundary between ferromagnetic and non-ferromagnetic ground state of a double-exchange system with quenched disorder for arbitrary relation between Hund exchange coupling and electron band width. The boundary is found both from the solution of the Dynamical Mean Field Approximation equations and from the comparison of the energies of the saturated ferromagnetic and paramagnetic states. Both methods give very similar results. To explain the disappearance of ferromagnetism in part of the parameter space we derive from the double-exchange Hamiltonian with classical localized spins in the limit of large but finite Hund exchange coupling the t−Jt-J model (with classical localized spins).Comment: 5 pages, 8 eps figures, latex; minor typos correcte
    • 

    corecore