14,567 research outputs found

    Design of a 2.4 GHz High-Performance Up-Conversion Mixer with Current Mirror Topology

    Get PDF
    In this paper, a low voltage low power up-conversion mixer, designed in a Chartered 0.18 μm RFCMOS technology, is proposed to realize the transmitter front-end in the frequency band of 2.4 GHz. The up-conversion mixer uses the current mirror topology and current-bleeding technique in both the driver and switching stages with a simple degeneration resistor. The proposed mixer converts an input of 100 MHz intermediate frequency (IF) signal to an output of 2.4 GHz radio frequency (RF) signal, with a local oscillator (LO) power of 2 dBm at 2.3 GHz. A comparison with conventional CMOS up-conversion mixer shows that this mixer has advantages of low voltage, low power consumption and high-performance. The post-layout simulation results demonstrate that at 2.4 GHz, the circuit has a conversion gain of 7.1 dB, an input-referred third-order intercept point (IIP3) of 7.3 dBm and a noise figure of 11.9 dB, while drawing only 3.8 mA for the mixer core under a supply voltage of 1.2 V. The chip area including testing pads is only 0.62×0.65 mm2

    Model B4 : multi-decade creep and shrinkage prediction of traditional and modern concretes

    Get PDF
    To improve the sustainability of concrete infrastructure, engineers face the challenge of incorporating new concrete materials while pushing the expected design life beyond 100 years. The time-dependent creep and shrinkage response of concrete governs the serviceability and durability in this multi-decade time frame. It has been shown that current prediction equations for creep and shrinkage underestimate material deformations observed in structures outside of a laboratory environment. A new prediction model for creep and shrinkage is presented that can overcome some of the shortcomings of the current equations. The model represents an extension and systematic recalibration of model B3, a 1995 RILEM Recommendation, which derives its functional form from the phenomena of diffusion, chemical hydration, moisture sorption, and the evolution of micro-stresses in the cement structure. The model is calibrated through a joint optimization of a new enlarged laboratory test database and a new database of bridge deflection records to overcome the bias towards short-term behavior. A framework for considering effects of aggregates, admixtures, additives, and higher temperatures is also incorporated

    Caging phenomena in reactions: Femtosecond observation of coherent, collisional confinement

    Get PDF
    We report striking observations of coherent caging of iodine, above the B state dissociation threshold, by single collisions with rare gas atoms at room-temperature. Despite the random nature of the solute–solvent interaction, the caged population retains coherence of the initially prepared unbound wave packet. We discuss some new concepts regarding dynamical coherent caging and the one-atom cage effect

    Ultrarelativistic polarized positron jets via collision of electron and ultraintense laser beams

    Full text link
    Relativistic spin-polarized positron beams are indispensable for future electron-positron colliders to test modern high-energy physics theory with high precision. However, present techniques require very large scale facilities for those experiments. We put forward a novel efficient way for generating ultrarelativistic polarized positron beams employing currently available laser fields. For this purpose the generation of polarized positrons via multiphoton Breit-Wheeler pair production and the associated spin dynamics in single-shot interaction of an ultraintense laser pulse with an ultrarelativistic electron beam is investigated in the quantum radiation-dominated regime. A specifically tailored small ellipticity of the laser field is shown to promote splitting of the polarized particles along the minor axis of laser polarization into two oppositely polarized beams. In spite of radiative de-polarization, a dense positron beam with up to about 90\% polarization can be generated in tens of femtoseconds. The method may eventually usher high-energy physics studies into smaller-scale laser laboratories

    Calculation of some properties of the vacuum

    Get PDF
    In this article, we calculate the dressed quark propagator with the flat bottom potential in the framework of the rain-bow Schwinger-Dyson equation, which is determined by mean field approximation of the global colour model lagrangian. The dressed quark propagator exhibits a dynamical symmetry breaking phenomenon and gives a constituent quark mass about 392 MeV, which is close to the value of commonly used constituent quark mass in the chiral quark model. Then based on the dressed quark propagator, we calculate some properties of the vacuum, such as quark condensate, mixed quark condensate gs<0qˉGμνσμνq0>g_{s}< 0|\bar{q}G_{\mu\nu}\sigma^{\mu\nu}q|0>, four quark condensate <0qˉΓqqˉΓq0><0|\bar{q} \Gamma q\bar{q} \Gamma q |0>, tensor, π\pi vacuum susceptibilities. The numerical results are compatible with the values of other theoretical approaches.Comment: 10 pages, 2 figures, 3 tables, some writing errors are correcte

    The Universal Edge Physics in Fractional Quantum Hall Liquids

    Full text link
    The chiral Luttinger liquid theory for fractional quantum Hall edge transport predicts universal power-law behavior in the current-voltage (II-VV) characteristics for electrons tunneling into the edge. However, it has not been unambiguously observed in experiments in two-dimensional electron gases based on GaAs/GaAlAs heterostructures or quantum wells. One plausible cause is the fractional quantum Hall edge reconstruction, which introduces non-chiral edge modes. The coupling between counterpropagating edge modes can modify the exponent of the II-VV characteristics. By comparing the ν=1/3\nu=1/3 fractional quantum Hall states in modulation-doped semiconductor devices and in graphene devices, we show that the graphene-based systems have an experimental accessible parameter region to avoid the edge reconstruction, which is suitable for the exploration of the universal edge tunneling exponent predicted by the chiral Luttinger liquid theory.Comment: 7 pages, 6 figure
    corecore