4,324 research outputs found

    Telling time with an intrinsically noisy clock

    Get PDF
    Intracellular transmission of information via chemical and transcriptional networks is thwarted by a physical limitation: the finite copy number of the constituent chemical species introduces unavoidable intrinsic noise. Here we provide a method for solving for the complete probabilistic description of intrinsically noisy oscillatory driving. We derive and numerically verify a number of simple scaling laws. Unlike in the case of measuring a static quantity, response to an oscillatory driving can exhibit a resonant frequency which maximizes information transmission. Further, we show that the optimal regulatory design is dependent on the biophysical constraints (i.e., the allowed copy number and response time). The resulting phase diagram illustrates under what conditions threshold regulation outperforms linear regulation.Comment: 10 pages, 5 figure

    Electron transport through multilevel quantum dot

    Full text link
    Quantum transport properties through some multilevel quantum dots sandwiched between two metallic contacts are investigated by the use of Green's function technique. Here we do parametric calculations, based on the tight-binding model, to study the transport properties through such bridge systems. The electron transport properties are significantly influenced by (a) number of quantized energy levels in the dots, (b) dot-to-electrode coupling strength, (c) location of the equilibrium Fermi energy EFE_F and (d) surface disorder. In the limit of weak-coupling, the conductance (gg) shows sharp resonant peaks associated with the quantized energy levels in the dots, while, they get substantial broadening in the strong-coupling limit. The behavior of the electron transfer through these systems becomes much more clearly visible from our study of current-voltage (II-VV) characteristics. In this context we also describe the noise power of current fluctuations (SS) and determine the Fano factor (FF) which provides an important information about the electron correlation among the charge carriers. Finally, we explore a novel transport phenomenon by studying the surface disorder effect in which the current amplitude increases with the increase of the surface disorder strength in the strong disorder regime, while, the amplitude decreases in the limit of weak disorder. Such an anomalous behavior is completely opposite to that of bulk disordered system where the current amplitude always decreases with the disorder strength. It is also observed that the current amplitude strongly depends on the system size which reveals the finite quantum size effect.Comment: 12 pages, 7 figure

    NEMO regulates a cell death switch in TNF signaling by inhibiting recruitment of RIPK3 to the cell death-inducing complex II

    Get PDF
    Incontinentia Pigmenti (IP) is a rare X-linked disease characterized by early male lethality and multiple abnormalities in heterozygous females. IP is caused by NF-κB essential modulator (NEMO) mutations. The current mechanistic model suggests that NEMO functions as a crucial component mediating the recruitment of the IκB-kinase (IKK) complex to tumor necrosis factor receptor 1 (TNF-R1), thus allowing activation of the pro-survival NF-κB response. However, recent studies have suggested that gene activation and cell death inhibition are two independent activities of NEMO. Here we describe that cells expressing the IP-associated NEMO-A323P mutant had completely abrogated TNF-induced NF-κB activation, but retained partial antiapoptotic activity and exhibited high sensitivity to death by necroptosis. We found that robust caspase activation in NEMO-deficient cells is concomitant with RIPK3 recruitment to the apoptosis-mediating complex. In contrast, cells expressing the ubiquitin-binding mutant NEMO-A323P did not recruit RIPK3 to complex II, an event that prevented caspase activation. Hence NEMO, independently from NF-κB activation, represents per se a key component in the structural and functional dynamics of the different TNF-R1-induced complexes. Alteration of this process may result in differing cellular outcomes and, consequently, also pathological effects in IP patients with different NEMO mutations

    A stochastic spectral analysis of transcriptional regulatory cascades

    Get PDF
    The past decade has seen great advances in our understanding of the role of noise in gene regulation and the physical limits to signaling in biological networks. Here we introduce the spectral method for computation of the joint probability distribution over all species in a biological network. The spectral method exploits the natural eigenfunctions of the master equation of birth-death processes to solve for the joint distribution of modules within the network, which then inform each other and facilitate calculation of the entire joint distribution. We illustrate the method on a ubiquitous case in nature: linear regulatory cascades. The efficiency of the method makes possible numerical optimization of the input and regulatory parameters, revealing design properties of, e.g., the most informative cascades. We find, for threshold regulation, that a cascade of strong regulations converts a unimodal input to a bimodal output, that multimodal inputs are no more informative than bimodal inputs, and that a chain of up-regulations outperforms a chain of down-regulations. We anticipate that this numerical approach may be useful for modeling noise in a variety of small network topologies in biology

    Ubiquitin ligases and beyond

    Get PDF
    First paragraph (this article has no abstract): In a review published in 2004 [1] and that still repays reading today, Cecile Pickart traced the evolution of research on ubiquitination from its origins in the proteasomal degradation of proteins through the revelation that it has a central role in cell cycle regulation and the recognition of regulatory roles for ubiquitin in intracellular membrane transport, cell signalling, transcription, translation, and DNA repair

    Onto better TRAILs for cancer treatment

    Get PDF
    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of the TNF cytokine superfamily. By cross-linking TRAIL-Receptor (TRAIL-R) 1 or TRAIL-R2, also known as death receptors 4 and 5 (DR4 and DR5), TRAIL has the capability to induce apoptosis in a wide variety of tumor cells while sparing vital normal cells. The discovery of this unique property among TNF superfamily members laid the foundation for testing the clinical potential of TRAIL-R-targeting therapies in the cancer clinic. To date, two of these therapeutic strategies have been tested clinically: (i) recombinant human TRAIL and (ii) antibodies directed against TRAIL-R1 or TRAIL-R2. Unfortunately, however, these TRAIL-R agonists have basically failed as most human tumors are resistant to apoptosis induction by them. It recently emerged that this is largely due to the poor agonistic activity of these agents. Consequently, novel TRAIL-R-targeting agents with increased bioactivity are currently being developed with the aim of rendering TRAIL-based therapies more active. This review summarizes these second-generation novel formulations of TRAIL and other TRAIL-R agonists, which exhibit enhanced cytotoxic capacity toward cancer cells, thereby providing the potential of being more effective when applied clinically than first-generation TRAIL-R agonists

    Entanglement and Tensor Product Decomposition for Two Fermions

    Full text link
    The problem of the choice of tensor product decomposition in a system of two fermions with the help of Bogoliubov transformations of creation and annihilation operators is discussed. The set of physical states of the composite system is restricted by the superselection rule forbidding the superposition of fermions and bosons. It is shown that the Wootters concurrence is not proper entanglement measure in this case. The explicit formula for the entanglement of formation is found and its dependence on tensor product decompositions of the Hilbert space is discussed. It is shown that the set of separable states is narrower than in two-qubit case. Moreover, there exist states which are separable with respect to all tensor product decompositions of the Hilbert space.Comment: 8pp, published versio
    corecore