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Intracellular transmission of information via chemical and transcriptional networks is thwarted by a

physical limitation: The finite copy number of the constituent chemical species introduces unavoidable

intrinsic noise. Here we solve for the complete probabilistic description of the intrinsically noisy response

to an oscillatory driving signal. We derive and numerically verify a number of simple scaling laws. Unlike

in the case of measuring a static quantity, response to an oscillatory signal can exhibit a resonant fre-

quency which maximizes information transmission. Furthermore, we show that the optimal regulatory de-

sign is dependent on biophysical constraints (i.e., the allowed copy number and response time). The re-

sulting phase diagram illustrates under what conditions threshold regulation outperforms linear regulation.
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It has long been recognized [1] that the ability to mea-
sure biochemical quantities, e.g., concentrations, is in-
trinsically thwarted by the small copy numbers present at
the scale of the cell. This observation has launched con-
siderable experimental investigation as to how high-
fidelity signal transmission can occur within single cells
[2,3], along with an associated literature in mathematical
and computational techniques for modeling such noisy
information transmission [4–6]. From the perspective of
biological design—either to understand the mechanisms
which lead to observed biology or to create synthetic
systems with desirable properties—these works investigate
how regulatory elements which comprise biological sys-
tems function in the presence of intrinsic noise [7].

We consider the simplest probabilistic model of a
regulatory element with a dynamical input, illustrated in
Fig. 1(a), in which a single transcription factor (the ‘‘par-
ent’’) with copy number n is driven by an oscillatory
creation rate fðtÞ ¼ gþ � cos!t and regulates the expres-
sion of a second species (the ‘‘child’’) with copy number
m; the regulation is modeled via the child’s creation rate
qn. This model captures the noisy downstream response to
oscillation, e.g., the cell cycle, without limiting the results
to a particular mechanism for generating oscillations (e.g.,
via cell division [8], repressive cycles [3], or activation-
repression circuits [9]). We show how the optimal design—
i.e., the choice of linear-vs-cooperative and up-vs-down-
regulation—is determined by the physical demands in
terms of allowed copy number and response time.
Furthermore, while our intuition from understanding how
best to measure static signals suggests that slower response
time is always more accurate [1], we illustrate how oscil-
latory driving leads to an information-optimal driving fre-
quency and compute how this frequency depends on copy
number.

We use the ‘‘spectral method’’ [10], which ex-
ploits the linearity of the master equation _pnm ¼
�fLn½fðtÞ� þ �Lm½qn�gpnm, the equation of motion for
the joint probability of observing n and m copies of the
parent and child, respectively, by expanding its solution in
terms of the natural eigenfunctions of the birth-death pro-
cess with constant creation and decay. For a birth-death

FIG. 1. (a) A transcription factor (the parent) with copy num-
ber n is driven by an oscillatory creation rate fðtÞ ¼
gþ � cos!t and regulates via qn the expression of a second
species (the child) with copy number m. (b),(c) Numerical
verifications (data points) of analytic expressions (lines) derived
in the small-information limit: Eqs. (9) (circles) and (13) top line
(squares) and bottom line (triangles) in (b), and Eq. (14) for both
up- (up triangles) and down-regulation (down triangles) in (c).
Parameters are g ¼ n0 ¼ 1 and c ¼ 0:1 for (b), ! ¼ 1 for (c),
and � ¼ � ¼ � ¼ 1 and q0 ¼ 0 for both, yielding small pa-
rameters j�1j � 0:5 [Eq. (5)], j�1j � 0:05 [linear; Eq. (12)], and
j�1j � 0:184 [threshold; Eq. (12)].
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process expressed in terms of an arbitrary creation rate h
and copy number s, the positive semidefinite operator Ls

acts as Ls½h�ps ¼ sps � ðsþ 1Þpsþ1 þ hps � hps�1;
time is normalized via the parent decay rate (in these units
� is the child decay rate). To study dynamics we also
Fourier transform in harmonics of the driving frequency!:

pnmðtÞ ¼
X1

j¼0

X1

k¼0

X1

z¼�1
pz
jkhn j jihm j kie�iz!t; (1)

where the parent and child eigenfunctions (or ‘‘spectral
modes’’) enjoy Ln½g�hn j ji ¼ jhn j ji and Lm½ �q��
hm j ki ¼ khm j ki, respectively. Just as in Refs. [10,11],
we introduce a gauge �q to define the basis; the analytic
results below are independent of this choice. The master
equation then becomes an algebraic relation among the
expansion coefficients pz

jk:
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jkþ
�

2

X

�
pz�1
j�1;k��

X

j0
�jj0p

z
j0;k�1

;

(2)

where �jj0 ¼ P
nhj j nið �q� qnÞhn j j0i. Algorithmically

we (i) initialize with Gz
00 ¼ �z0 (set by normalization),

(ii) exploit the subdiagonality in k, and (iii) for each k,
exploit the subdiagonality in j; no matrices need be
inverted.

Efficient computation of pnmðtÞ allows optimization of
the mutual information Ið�; nÞ between the input vari-
able—the phase � ¼ !t of the driving oscillation—and
the output variable—the copy number of either the parent
or the child:

Ið�; nÞ ¼
Z 2�

0
d�

X

n

pðn j �Þpð�Þ logpðn j �Þ
p0
n

; (3)

where pðn j �Þ � pnðtÞ, pð�Þ ¼ 1=2�, and p0
n ¼R

2�
0 d�pðn j �Þpð�Þ is the time-averaged distribution

[12].
The dynamics of the parent can be found exactly by

using either the method of characteristics or spectral de-
composition [13]: pnðtÞ is a Poisson distribution with time-
dependent mean �ðtÞ ¼ �0 þ 2j�1j cosð!t� �Þ, with

�0 ¼ g; (4)

j�1j ¼ �

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ!2

p ; (5)

and phase shift � ¼ tan�1!. The Fourier transform coef-
ficients pz

n ¼ R
2�
0 d�eiz�pðn j �Þ=ð2�Þ are then com-

puted by expanding the exponential in pðn j �Þ and
identifying the modes [13]:

pz
n ¼ eiz�

X

j

j�1j2jþjzj

j!ðjþ jzjÞ! hn j 2jþ jzji: (6)

In the limit of weak (� � 1) or fast (! � 1) driving, an
approximation for Ið�; nÞ may be obtained by expanding
in the small parameter j�1j. We first express Eq. (3) in

terms of the Fourier transform pðn j �Þ ¼ P
zp

z
ne

�iz�:
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(7)

Then we note that, for small j�1j, Eq. (6) is dominated by

the j ¼ 0 term, i.e., pz
n 	 eiz�j�1jjzjhn j jzji=jzj!. Since this

is itself small for z � 0, we expand the log in Eq. (7) as
logð1þ xÞ ¼ x� x2=2þ 
 
 
 for small x. The first two
terms in the log expansion [13] contain the leading-order
behavior in pz

n (proportional to p1
np

�1
n ¼ jp1

nj2); employ-

ing
R
2�
0 d�eiðz�z0Þ� ¼ 2��zz0 one obtains
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(8)

¼ �2

4g

1

1þ!2
; (9)

where the second to last step uses hn j 0i ¼ e�ggn=n! and
hn j 1i ¼ hn j 0iðn� gÞ=g [11] to evaluate the sum.
Equation (8) shows that mutual information asymptotes
to the square of the amplitude of the oscillation over the
mean. Equation (9) scales like !0 at low frequency and
!�2 at high frequency, demonstrating that the parent acts
as a low-pass filter of information; this scaling is numeri-
cally verified in Fig. 1(b).
Although the child distribution pmðtÞ is not analytically

accessible in general, its mean �ðtÞ is exactly calculable:
Summing the master equation over both indices against m
and Fourier transforming yields �ðtÞ ¼ P

z�ze
�iz!t,

where

�z ¼ 1

1� iz!=�

X

n

qnp
z
n: (10)

In the limit of weak regulation (i.e., when qn is near
constant) we may approximate pmðtÞ as a Poisson distri-
bution with oscillatory mean parameterized by the first and
second Fourier modes of the exact mean, i.e.,�ðtÞ 	 �0 �
2j�1j cosð!t� 	Þ for up- (down-) regulation, where 	 ¼
phaseð�1Þ ¼ tan�1!=�þ tan�1!. Under this approxima-
tion, as in Eq. (8), the information between the phase of the
driving oscillation and the copy number of the child is the
oscillation amplitude squared over the mean, i.e.,
Ið�;mÞ ¼ j�1j2=�0 for small j�1j.
To compare the transmission properties of both non- and

highly cooperative regulation, we study both the linear
function qn ¼ q0 þ cn and the threshold function qn ¼
q0 þ�
 (n 2 ��), respectively, where 
 is a character-
istic function equal to 1 when n is in the set �þ ¼ fn >
n0g (up-regulation) or �� ¼ fn � n0g (down-regulation)
and 0 otherwise. In these cases, the mean of the child
distribution oscillates about the point

�0 ¼
X

n

qnp
0
n ¼ q0 þ

�
cg linear

�p0� threshold:
(11)
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Here the linear result exploits the fact that the mean of the
time-averaged parent distribution p0

n is g (which can be
seen from the relationship between distribution moments
and spectral modes [13]). In the threshold result we de-
fine p0� � P

n2��p
0
n ¼ �� �P

j>0j�1j2jhn0 j 2j� 1i=
ðj!Þ2 	 ��, where �� � P

n2��hn j 0i; the second to

last step exploits the result
P

n2��hn j ji ¼ �hn0 j j� 1i
for j > 0 [13], and the last step takes j ¼ 0 in the small j�1j
limit. The amplitude of the oscillation of the child mean is

j�1j ¼
P

n qnjp1
njffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þð!=�Þ2p ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð!=�Þ2p �

�
cj�1j
�jp1�j; (12)

where once more the linear result (top) uses the rela-
tionship between moments and modes and in the
threshold result (bottom) we define and approximate
jp1�j �

P
n2��jp1

nj ¼ P
jj�1j2jþ1hn0 j 2ji=½j!ðjþ 1Þ!� 	

j�1jhn0 j 0i [13]. Equations (11) and (12) yield the follow-
ing approximations for linear (top) and threshold (bottom)
regulation:

Ið�;mÞ 	 gIð�; nÞ
1þ ð!=�Þ2 �

�
c2=ðq0 þ cgÞ
�2hn0 j 0i2=ðq0 þ ���Þ;

(13)

where Ið�; nÞ is as in Eq. (9). Equation (13) shows that the
child Ið�;mÞ is a sharper low-pass filter than the parent
Ið�; nÞ, falling off like !�4 at high frequency instead of
!�2; this scaling is verified numerically in Fig. 1(b). We
note that since t, n, and m are not Markov related, i.e.,
pðm j tÞ � P

npðm j nÞpðn j tÞ, Eq. (13) is not bound by
the data-processing inequality [14], and it is possible for
the child to transmit more information than the parent, i.e.,
Ið�;mÞ> Ið�; nÞ (e.g., for linear regulation with ! ! 0,
q0 ¼ 0, and c > 1), which we have verified numerically
[13].

Equation (13) also offers analytic intuition about the
optimal placement of the parent distribution with respect
to a threshold regulation function. The derivative of
Eq. (13) (bottom) with respect to g vanishes at g�, the
information-optimal mean of the parent distribution:

g� ¼ n0
1��hn0 j 0i=½2ðq0 þ ���Þ� : (14)

As verified in Fig. 1(c), Eq. (14) shows that the parent
distribution is shifted below the threshold for up-regulation
and above the threshold for down-regulation. These shifts
account for the ability of up-regulation to outperform
down-regulation when the copy number is highly con-
strained (see Fig. 3), an effect we observed previously
[10] when numerically optimizing steady-state information
between the first and last species in a regulatory cascade.

The above analytic approximations offer guidance dur-
ing a full optimization of Ið�;mÞ via numerical integration
of Eq. (3). As suggested by Eq. (13), numerical optimiza-
tion confirms that Ið�;mÞ increases when (i) the amplitude
of the driving oscillation is maximal (� ¼ g) and (ii) the

dynamic range is maximal (q0 ¼ 0 and c ! 1 or� ! 1).
The slope c or discontinuity �, however, is constrained by
the average copy number of the child �0 [Eq. (11)].
Therefore, for a fixed driving frequency and fixed total
average copy number N ¼ hni þ hmi ¼ gþ�0, we opti-
mize over the single parameter g by setting � ¼ g, q0 ¼ 0,
and c ¼ �0=g ¼ ðN � gÞ=g or � ¼ �0=p

0� ¼ ðN � gÞ=
p0�; additionally, we set � ¼ 1 for equal parent and child
decay rates [10]. For threshold regulation, an optimization
over g is done at each of a set of values of the (discrete)
parameter n0, and the global optimum is selected.
At low copy number, optimal information I�ð�;mÞ be-

haves as one might expect from the small-oscillation limit
[Eq. (13)]: It decreases monotonically with frequency
[Fig. 2(a), bottom curves]. At high copy number,
I�ð�;mÞ decreases monotonically with frequency for lin-
ear regulation but for threshold regulation exhibits a maxi-
mum at a resonant frequency [Fig. 2(a), top curves].
Careful examination of the child distribution at different
phases [Figs. 2(b)–2(d)] (or simply its mean [13]) reveals
the origin of this maximum as follows. As the parent
oscillates about the threshold, the child distribution is
switchlike, with two long-lived switch states centered at
the threshold’s low and high rates and brief intermediate
states in between. At high copy number, the threshold rates

FIG. 2. (a) At high copy number (N ¼ 20, top curves) the
optimal information I�ð�;mÞ exhibits a resonant driving fre-
quency (point c) for up- (dashed line) and down-threshold (dot-
dashed line) regulation but not for linear (solid line) regulation;
at low copy number (N ¼ 2, bottom curves), there is no resonant
frequency, and slowest (! ! 0) is best. (b)–(d) correspond to
marked points in (a) and show the optimal child distribution for
down-threshold regulation at phases � � !t� 	 ¼ 0, �=2, �,
and 3�=2 [legend in (d) applies to (b)–(d)]: (b) Slow driving
produces switchlike behavior, with long-lived low- (� ¼ 0) and
high-copy-number (� ¼ �) states and brief intermediates (� ¼
�=2, 3�=2) in between; (c) moderate driving produces switch-
like behavior with distinguishable intermediates, transmitting
the most information; and (d) fast driving time-averages the
parent, and thus the child, distribution.
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are far apart (one is zero and the other is large), making the
switch states well separated and transmitting (slightly more
than, due to the intermediate states) the strict switch limit
[10] of I�ð�;mÞ � 1 bit. For slow oscillations the inter-
mediate states are symmetric [Fig. 2(b)], but for faster
oscillations there is a lag in transitioning from one switch
state to the other, making the intermediate states distin-
guishable [Fig. 2(c)] and transmitting more information
about phase. Thus the resonant frequency !� balances the
slowness required to avoid time averaging [Fig. 2(d)] with
the speed required for distinguishable intermediate states.
The high-copy-number behavior described here has been
verified for N as high as 50 [13].

The phase diagram (Fig. 3) shows the information-
optimal regulation among linear, up-threshold, and down-
threshold regulation across a range of copy numbers N and
periods T ¼ 2�=!. Linear regulation is best when both N
and T are large, ultimately surpassing threshold regula-
tion’s limit of�1 bit. Down-threshold regulation is best at
values of T near 2�=!� because its intermediate states are
more distinguishable (i.e., have a larger Jensen-Shannon
divergence) than those of a similarly parameterized up
threshold. Up-threshold regulation is best at low N due to
its tendency, as discussed above [Eq. (14)] and in Ref. [10],
to require fewer proteins to match the transmission across a
similarly parameterized down threshold.

Finally, we turn to comparing our predictions with real
biological parameters. In simpler systems, where decay
rates are bounded from below by dilution from cell divi-
sion, the ratio of the cell cycle frequency to a species’
decay rate is ! � 2�= ln2 	 9. Our results predict that

slightly smaller ratios are information-optimal (!� �
2�=10 	 0:6 at high N; see Fig. 3), as in, e.g., yeast
glycolysis oscillations (!� 0:5 [15]) or bacterial circadian
rhythms, when, through either active degradation [16] or
rapid cell division [17], decay rates are several times larger
than the circadian frequency, making ! order 1.
The low-pass behavior revealed in Eqs. (9) and (13) is

consistent with our intuition from measuring static quan-
tities in the presence of intrinsic noise [1]: The longer we
wait, the more accurate our estimate. However, in the
presence of an oscillatory driving signal, we find that
threshold regulation can lead to an information-optimal
frequency, and waiting longer is not necessarily the opti-
mal strategy. Furthermore, we have shown that, at a fixed
allowed copy number and allowed integration time, one
may find that a different regulation strategy (linear, thresh-
old up-regulation, or threshold down-regulation) is optimal
for responding to oscillatory driving. Absent from this
analysis are intriguing questions such as whether the di-
versity of other network topologies observed in nature—
including cascades and feedback circuits—are consistent
with these observations.
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