1,353 research outputs found

    On the Collision of Cosmic Superstrings

    Full text link
    We study the formation of three-string junctions between (p,q)-cosmic superstrings, and collisions between such strings and show that kinematic constraints analogous to those found previously for collisions of Nambu-Goto strings apply here too, with suitable modifications to take account of the additional requirements of flux conservation. We examine in detail several examples involving collisions between strings with low values of p and q, and also examine the rates of growth or shrinkage of strings at a junction. Finally, we briefly discuss the formation of junctions for strings in a warped space, specifically with a Klebanov-Strassler throat, and show that similar constraints still apply with changes to the parameters taking account of the warping and the background flux.Comment: 13 pages, 2 figure

    Measurement of Spectral Breaks in Pulsar Wind Nebulae with Millimeter-wave Interferometry

    Full text link
    We have observed pulsar wind nebulae in the three supernova remnants G11.2-0.3, G16.7+0.1, and G29.7-0.3 at 89 GHz with the Berkeley-Illinois-Maryland Association Array, measuring total flux densities of two of them for comparison with archival data at other frequencies . In G16.7+0.1, we find a break in the spectrum of the PWN at ~26 GHz. In G29.7-0.3, our data suggest a break in the integrated spectrum of the central nebula at ~55 GHz, lower than previously estimated. However, we have found spatial structure in the spectrum of this nebula. The emission to the north of pulsar J1846-0258 has a broken spectrum, with break frequency ~< 100 GHz, consistent with a conventional pulsar-powered nebula. The emission to the south of the pulsar has a near-power-law spectrum from radio to X-rays: this component may be unrelated to the PWN, or may be evidence of asymmetries and/or time evolution in the pulsar's energy output. We present 89 GHz images of each remnant.Comment: 8 pages, including 7 eps figures. ApJ, in pres

    An Automated Method for the Detection and Extraction of HI Self-Absorption in High-Resolution 21cm Line Surveys

    Full text link
    We describe algorithms that detect 21cm line HI self-absorption (HISA) in large data sets and extract it for analysis. Our search method identifies HISA as spatially and spectrally confined dark HI features that appear as negative residuals after removing larger-scale emission components with a modified CLEAN algorithm. Adjacent HISA volume-pixels (voxels) are grouped into features in (l,b,v) space, and the HI brightness of voxels outside the 3-D feature boundaries is smoothly interpolated to estimate the absorption amplitude and the unabsorbed HI emission brightness. The reliability and completeness of our HISA detection scheme have been tested extensively with model data. We detect most features over a wide range of sizes, linewidths, amplitudes, and background levels, with poor detection only where the absorption brightness temperature amplitude is weak, the absorption scale approaches that of the correlated noise, or the background level is too faint for HISA to be distinguished reliably from emission gaps. False detection rates are very low in all parts of the parameter space except at sizes and amplitudes approaching those of noise fluctuations. Absorption measurement biases introduced by the method are generally small and appear to arise from cases of incomplete HISA detection. This paper is the third in a series examining HISA at high angular resolution. A companion paper (Paper II) uses our HISA search and extraction method to investigate the cold atomic gas distribution in the Canadian Galactic Plane Survey.Comment: 39 pages, including 14 figure pages; to appear in June 10 ApJ, volume 626; figure quality significantly reduced for astro-ph; for full resolution, please see http://www.ras.ucalgary.ca/~gibson/hisa/cgps1_survey

    The experimental gas-phase structures of 1,3,5-trisilylbenzene and hexasilylbenzene and the theoretical structures of all benzenes with three or more silyl substituents

    Get PDF
    The structures of 1,3,5-trisilylbenzene and hexasilylbenzene in the gas phase have been determined by electron diffraction, and that of 1,3,5-trisilylbenzene by X-ray crystallography. The structures of three trisilylbenzene isomers, three tetrasilylbenzenes, pentasilylbenzene and hexasilylbenzene have been computed, ab initio and using Density Functional Theory, at levels up to MP2/6-31G*. The primary effect of silyl substituents is to narrow the ring angle at the substituted carbon atoms. Steric interactions between silyl groups on neighbouring carbon atoms lead first to displacement of these groups away from one another, and then to displacement out of the ring plane, with alternate groups moving to opposite sides of the ring. In the extreme example, hexasilylbenzene, the SiCCSi dihedral angle is 17.8(8)°

    Terahertz oscillations in an In<sub>0.53</sub>Ga<sub>0.47</sub>As submicron planar gunn diode

    Get PDF
    The length of the transit region of a Gunn diode determines the natural frequency at which it operates in fundamental mode – the shorter the device, the higher the frequency of operation. The long-held view on Gunn diode design is that for a functioning device the minimum length of the transit region is about 1.5ÎŒm, limiting the devices to fundamental mode operation at frequencies of roughly 60 GHz. Study of these devices by more advanced Monte Carlo techniques that simulate the ballistic transport and electron-phonon interactions that govern device behaviour, offers a new lower bound of 0.5ÎŒm, which is already being approached by the experimental evidence that has shown planar and vertical devices exhibiting Gunn operation at 600nm and 700nm, respectively. The paper presents results of the first ever THz submicron planar Gunn diode fabricated in In&lt;sub&gt;0.53&lt;/sub&gt;Ga&lt;sub&gt;0.47&lt;/sub&gt;A on an InP substrate, operating at a fundamental frequency above 300 GHz. Experimentally measured rf power of 28 ”W was obtained from a 600 nm long ×120 ”m wide device. At this new length, operation in fundamental mode at much higher frequencies becomes possible – the Monte Carlo model used predicts power output at frequencies over 300 GHz

    Molecular Tracers of the Central 12 pc of the Galactic Center

    Full text link
    We have used the BIMA array to image the Galactic Center with a 19-pointing mosaic in HCN(1-0), HCO+(1-0), and H 42-alpha emission with 5 km/s velocity resolution and 13'' x 4'' angular resolution. The 5' field includes the circumnuclear ring (CND) and parts of the 20 and 50 km/s clouds. HCN(1-0) and HCO+ trace the CND and nearby giant molecular clouds while the H 42-alpha emission traces the ionized gas in Sgr A West. We find that the CND has a definite outer edge in HCN and HCO+ emission at ~45'' radius and appears to be composed of two or three distinct streams of molecular gas rotating around the nucleus. Outside the CND, HCN and HCO+ trace dense clumps of high-velocity gas in addition to optically thick emission from the 20 and 50 km/s clouds. A molecular ridge of compressed gas and dust, traced in NH3 emission and self-absorbed HCN and HCO+, wraps around the eastern edge of Sgr A East. Just inside this ridge are several arcs of gas which have been accelerated by the impact of Sgr A East with the 50 km/s cloud. HCN and HCO+ emission trace the extension of the northern arm of Sgr A West which appears to be an independent stream of neutral and ionized gas and dust originating outside the CND. Broad line widths and OH maser emission mark the intersection of the northern arm and the CND. Comparison to previous NH3 and 1.2mm dust observations shows that HCN and HCO+ preferentially trace the CND and are weaker tracers of the GMCs than NH3 and dust. We discuss possible scenarios for the emission mechanisms and environment at the Galactic center which could explain the differences in these images.Comment: 24 pages, including 17 figures; to appear in The Astrophysical Journa

    Effect of deconfinement on resonant transport in quantum wires

    Full text link
    The effect of deconfinement due to finite band offsets on transport through quantum wires with two constrictions is investigated. It is shown that the increase in resonance linewidth becomes increasingly important as the size is reduced and ultimately places an upper limit on the energy (temperature) scale for which resonances may be observed.Comment: 6 pages, 6 postscript files with figures; uses REVTe
    • 

    corecore