297 research outputs found

    CIRS: Cluster Infall Regions in the Sloan Digital Sky Survey I. Infall Patterns and Mass Profiles

    Full text link
    We use the Fourth Data Release of the Sloan Digital Sky Survey to test the ubiquity of infall patterns around galaxy clusters and measure cluster mass profiles to large radii. We match X-ray cluster catalogs with SDSS, search for infall patterns, and compute mass profiles for a complete sample of X-ray selected clusters. Very clean infall patterns are apparent in most of the clusters, with the fraction decreasing with increasing redshift due to shallower sampling. All 72 clusters in a well-defined sample limited by redshift (ensuring good sampling) and X-ray flux (excluding superpositions) show infall patterns sufficient to apply the caustic technique. This sample is by far the largest sample of cluster mass profiles extending to large radii to date. Similar to CAIRNS, cluster infall patterns are better defined in observations than in simulations. Further work is needed to determine the source of this difference. We use the infall patterns to compute mass profiles for 72 clusters and compare them to model profiles. Cluster scaling relations using caustic masses agree well with those using X-ray or virial mass estimates, confirming the reliability of the caustic technique. We confirm the conclusion of CAIRNS that cluster infall regions are well fit by NFW and Hernquist profiles and poorly fit by singular isothermal spheres. This much larger sample enables new comparisons of cluster properties with those in simulations. The shapes (specifically, NFW concentrations) of the mass profiles agree well with the predictions of simulations. The mass inside the turnaround radius is on average 2.19±\pm0.18 times that within the virial radius. This ratio agrees well with recent predictions from simulations of the final masses of dark matter haloes.Comment: 34 pages, 24 figures, accepted for publication in AJ, full resolution version available at http://www.astro.yale.edu/krines

    The Virial Mass Function of Nearby SDSS Galaxy Clusters

    Full text link
    We present a new determination of the cluster mass function and velocity dispersion function in a volume 107h3\sim10^7 h^3Mpc3^{-3} using the Fourth Data Release of the Sloan Digital Sky Survey (SDSS). We use the caustic technique to remove foreground and background galaxies. The cluster virial mass function agrees well with recent estimates from both X-ray observations and cluster richnesses. The mass function lies between those predicted by the First-Year and Three-Year WMAP data. We constrain the cosmological parameters Ωm\Omega_m and σ8\sigma_8 and find good agreement with WMAP and constraints from other techniques. With the CIRS mass function alone, we estimate Ωm=0.240.09+0.14\Omega_m=0.24^{+0.14}_{-0.09} and σ8=0.920.19+0.24\sigma_8=0.92^{+0.24}_{-0.19}, or σ8=0.84±\sigma_8=0.84\pm0.03 when holding Ωm=0.3\Omega_m=0.3 fixed. We also use the WMAP parameters as priors and constrain velocity segregation in clusters. Using the First and Third-Year results, we infer velocity segregation of σgxy/σDM0.94±\sigma_{gxy}/\sigma_{DM}\approx0.94\pm0.05 or 1.28±\pm0.06 respectively. We compare the velocity dispersion function of clusters to that of early-type galaxies and conclude that clusters comprise the high-velocity end of the velocity dispersion function of dark matter haloes. The evolution of cluster abundances provides constraints on dark energy models; the mass function presented here offers an important low redshift calibration benchmark.Comment: 22 pages, 11 figures, ApJ in press, revised figure

    Infrared luminosities of galaxies in the Local Volume

    Full text link
    Near-infrared properties of 451 galaxies with distances D \leq 10 Mpc are considered basing on the all-sky two micron survey (2MASS). A luminosity function of the galaxies in the K-band is derived within [-25,-11] mag. The local (D < 8 Mpc) luminosity density is estimated to be 6.8*10^8 L_sun/Mpc^3 that exceeds (1.5+-0.1) times the global cosmic density in the K-band. Virial mass-to-K-luminosity ratios are determined for nearby groups and clusters. In the luminosity range of (5*10^{10} - 2*10^{13})L_sun, the groups and clusters follow the relation \lg(M/L_K) propto (0.27+-0.03) lg(L_K) with a scatter of \~0.1 comparable to errors of the observables. The mean ratio ~= (20-25) M_sun/L_sun for the galaxy systems turns out to be significantly lower than the global ratio, (80-90)M_sun/L_sun, expected in the standard cosmological model with the matter density of Omega_m =0.27. This discrepancy can be resolved if most of dark matter in the universe is not associated with galaxies and their systems.Comment: 15 pages, 7 figures. Astronomy Letters, submitte

    Sequence of a (1-3, 1-4)-[beta]-Glucanase cDNA from Oat

    Full text link

    SN~2012cg: Evidence for Interaction Between a Normal Type Ia Supernova and a Non-Degenerate Binary Companion

    Get PDF
    We report evidence for excess blue light from the Type Ia supernova SN 2012cg at fifteen and sixteen days before maximum B-band brightness. The emission is consistent with predictions for the impact of the supernova on a non-degenerate binary companion. This is the first evidence for emission from a companion to a SN Ia. Sixteen days before maximum light, the B-V color of SN 2012cg is 0.2 mag bluer than for other normal SN~Ia. At later times, this supernova has a typical SN Ia light curve, with extinction-corrected M_B = -19.62 +/- 0.02 mag and Delta m_{15}(B) = 0.86 +/- 0.02. Our data set is extensive, with photometry in 7 filters from 5 independent sources. Early spectra also show the effects of blue light, and high-velocity features are observed at early times. Near maximum, the spectra are normal with a silicon velocity v_{Si} = -10,500$ km s^{-1}. Comparing the early data with models by Kasen (2010) favors a main-sequence companion of about 6 solar masses. It is possible that many other SN Ia have main-sequence companions that have eluded detection because the emission from the impact is fleeting and faint.Comment: accepted to Ap

    Halo mass - concentration relation from weak lensing

    Get PDF
    We perform a statistical weak lensing analysis of dark matter profiles around tracers of halo mass from galactic- to cluster-size halos. In this analysis we use 170,640 isolated ~L* galaxies split into ellipticals and spirals, 38,236 groups traced by isolated spectroscopic Luminous Red Galaxies (LRGs) and 13,823 MaxBCG clusters from the Sloan Digital Sky Survey (SDSS) covering a wide range of richness. Together these three samples allow a determination of the density profiles of dark matter halos over three orders of magnitude in mass, from 10^{12} M_{sun} to 10^{15} M_{sun}. The resulting lensing signal is consistent with an NFW or Einasto profile on scales outside the central region. We find that the NFW concentration parameter c_{200b} decreases with halo mass, from around 10 for galactic halos to 4 for cluster halos. Assuming its dependence on halo mass in the form of c_{200b} = c_0 [M/(10^{14}M_{sun}/h)]^{\beta}, we find c_0=4.6 +/- 0.7 (at z=0.22) and \beta=0.13 +/- 0.07, with very similar results for the Einasto profile. The slope (\beta) is in agreement with theoretical predictions, while the amplitude is about two standard deviations below the predictions for this mass and redshift, but we note that the published values in the literature differ at a level of 10-20% and that for a proper comparison our analysis should be repeated in simulations. We discuss the implications of our results for the baryonic effects on the shear power spectrum: since these are expected to increase the halo concentration, the fact that we see no evidence of high concentrations on scales above 20% of the virial radius suggests that baryonic effects are limited to small scales, and are not a significant source of uncertainty for the current weak lensing measurements of the dark matter power spectrum. [ABRIDGED]Comment: 17 pages, 5 figures, accepted to JCAP pending minor revisions that are included in v2 here on arXi

    A Multiband Study of the Galaxy Populations of the First Four Sunyaev--Zeldovich Effect selected Galaxy Clusters

    Full text link
    We present first results of an examination of the optical properties of the galaxy populations in SZE selected galaxy clusters. Using clusters selected by the South Pole Telescope survey and deep multiband optical data from the Blanco Cosmology Survey, we measure the radial profile, the luminosity function, the blue fraction and the halo occupation number of the galaxy populations of these four clusters with redshifts ranging from 0.3 to 1. Our goal is to understand whether there are differences among the galaxy populations of these SZE selected clusters and previously studied clusters selected in the optical and the X-ray. The radial distributions of galaxies in the four systems are consistent with NFW profiles with a galaxy concentration of 3 to 6. We show that the characteristic luminosities in grizgriz bands are consistent with passively evolving populations emerging from a single burst at redshift z=3z=3. The faint end power law slope of the luminosity function is found to be on average α1.2\alpha \approx -1.2 in griz. Halo occupation numbers (to m+2m^*+2) for these systems appear to be consistent with those based on X-ray selected clusters. The blue fraction estimated to 0.36L0.36L^*, for the three lower redshift systems, suggests an increase with redshift, although with the current sample the uncertainties are still large. Overall, this pilot study of the first four clusters provides no evidence that the galaxy populations in these systems differ significantly from those in previously studied cluster populations selected in the X-ray or the optical.Comment: 12 pages, 12 figures and 3 tables. Accepted for publication in Ap

    SPT-CL J0546-5345: A Massive z > 1 Galaxy Cluster Selected Via the Sunyaev-Zel'dovich Effect with the South Pole Telescope

    Get PDF
    We report the spectroscopic confirmation of SPT-CL J0546-5345 at = 1.067. To date this is the most distant cluster to be spectroscopically confirmed from the 2008 South Pole Telescope (SPT) catalog, and indeed the first z > 1 cluster discovered by the Sunyaev-Zel'dovich Effect (SZE). We identify 21 secure spectroscopic members within 0.9 Mpc of the SPT cluster position, 18 of which are quiescent, early-type galaxies. From these quiescent galaxies we obtain a velocity dispersion of 1179^{+232}_{-167} km/s, ranking SPT-CL J0546-5345 as the most dynamically massive cluster yet discovered at z > 1. Assuming that SPT-CL J0546-5345 is virialized, this implies a dynamical mass of M_200 = 1.0^{+0.6}_{-0.4} x 10^{15} Msun, in agreement with the X-ray and SZE mass measurements. Combining masses from several independent measures leads to a best-estimate mass of M_200 = (7.95 +/- 0.92) x 10^{14} Msun. The spectroscopic confirmation of SPT-CL J0546-5345, discovered in the wide-angle, mass-selected SPT cluster survey, marks the onset of the high redshift SZE-selected galaxy cluster era.Comment: ApJ, in pres

    UBVRI Light Curves of 44 Type Ia Supernovae

    Get PDF
    We present UBVRI photometry of 44 type-Ia supernovae (SN Ia) observed from 1997 to 2001 as part of a continuing monitoring campaign at the Fred Lawrence Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics. The data set comprises 2190 observations and is the largest homogeneously observed and reduced sample of SN Ia to date, nearly doubling the number of well-observed, nearby SN Ia with published multicolor CCD light curves. The large sample of U-band photometry is a unique addition, with important connections to SN Ia observed at high redshift. The decline rate of SN Ia U-band light curves correlates well with the decline rate in other bands, as does the U-B color at maximum light. However, the U-band peak magnitudes show an increased dispersion relative to other bands even after accounting for extinction and decline rate, amounting to an additional ~40% intrinsic scatter compared to B-band.Comment: 84 authors, 71 pages, 51 tables, 10 figures. Accepted for publication in the Astronomical Journal. Version with high-res figures and electronic data at http://astron.berkeley.edu/~saurabh/cfa2snIa
    corecore